Metamath Proof Explorer


Theorem irrednu

Description: An irreducible element is not a unit. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses irredn0.i I=IrredR
irrednu.u U=UnitR
Assertion irrednu XI¬XU

Proof

Step Hyp Ref Expression
1 irredn0.i I=IrredR
2 irrednu.u U=UnitR
3 eqid BaseR=BaseR
4 eqid R=R
5 3 2 1 4 isirred2 XIXBaseR¬XUxBaseRyBaseRxRy=XxUyU
6 5 simp2bi XI¬XU