Description: An irreducible element is not a unit. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | irredn0.i | ⊢ 𝐼 = ( Irred ‘ 𝑅 ) | |
| irrednu.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| Assertion | irrednu | ⊢ ( 𝑋 ∈ 𝐼 → ¬ 𝑋 ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | irredn0.i | ⊢ 𝐼 = ( Irred ‘ 𝑅 ) | |
| 2 | irrednu.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 5 | 3 2 1 4 | isirred2 | ⊢ ( 𝑋 ∈ 𝐼 ↔ ( 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ ¬ 𝑋 ∈ 𝑈 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 𝑋 → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ) ) |
| 6 | 5 | simp2bi | ⊢ ( 𝑋 ∈ 𝐼 → ¬ 𝑋 ∈ 𝑈 ) |