Metamath Proof Explorer


Theorem mgptset

Description: Topology component of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypothesis mgpbas.1 M = mulGrp R
Assertion mgptset TopSet R = TopSet M

Proof

Step Hyp Ref Expression
1 mgpbas.1 M = mulGrp R
2 eqid R = R
3 1 2 mgpval M = R sSet + ndx R
4 tsetid TopSet = Slot TopSet ndx
5 tsetndxnplusgndx TopSet ndx + ndx
6 3 4 5 setsplusg TopSet R = TopSet M