Metamath Proof Explorer


Theorem mgptset

Description: Topology component of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypothesis mgpbas.1 M=mulGrpR
Assertion mgptset TopSetR=TopSetM

Proof

Step Hyp Ref Expression
1 mgpbas.1 M=mulGrpR
2 eqid R=R
3 1 2 mgpval M=RsSet+ndxR
4 tsetid TopSet=SlotTopSetndx
5 tsetndxnplusgndx TopSetndx+ndx
6 3 4 5 setsplusg TopSetR=TopSetM