Metamath Proof Explorer


Theorem mgptset

Description: Topology component of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypothesis mgpbas.1 𝑀 = ( mulGrp ‘ 𝑅 )
Assertion mgptset ( TopSet ‘ 𝑅 ) = ( TopSet ‘ 𝑀 )

Proof

Step Hyp Ref Expression
1 mgpbas.1 𝑀 = ( mulGrp ‘ 𝑅 )
2 eqid ( .r𝑅 ) = ( .r𝑅 )
3 1 2 mgpval 𝑀 = ( 𝑅 sSet ⟨ ( +g ‘ ndx ) , ( .r𝑅 ) ⟩ )
4 tsetid TopSet = Slot ( TopSet ‘ ndx )
5 tsetndxnplusgndx ( TopSet ‘ ndx ) ≠ ( +g ‘ ndx )
6 3 4 5 setsplusg ( TopSet ‘ 𝑅 ) = ( TopSet ‘ 𝑀 )