Metamath Proof Explorer


Theorem unitsubm

Description: The group of units is a submonoid of the multiplicative monoid of the ring. (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypotheses unitsubm.1 U = Unit R
unitsubm.2 M = mulGrp R
Assertion unitsubm R Ring U SubMnd M

Proof

Step Hyp Ref Expression
1 unitsubm.1 U = Unit R
2 unitsubm.2 M = mulGrp R
3 eqid Base R = Base R
4 3 1 unitss U Base R
5 4 a1i R Ring U Base R
6 eqid 1 R = 1 R
7 1 6 1unit R Ring 1 R U
8 2 oveq1i M 𝑠 U = mulGrp R 𝑠 U
9 1 8 unitgrp R Ring M 𝑠 U Grp
10 grpmnd M 𝑠 U Grp M 𝑠 U Mnd
11 9 10 syl R Ring M 𝑠 U Mnd
12 2 ringmgp R Ring M Mnd
13 2 3 mgpbas Base R = Base M
14 2 6 ringidval 1 R = 0 M
15 eqid M 𝑠 U = M 𝑠 U
16 13 14 15 issubm2 M Mnd U SubMnd M U Base R 1 R U M 𝑠 U Mnd
17 12 16 syl R Ring U SubMnd M U Base R 1 R U M 𝑠 U Mnd
18 5 7 11 17 mpbir3and R Ring U SubMnd M