Metamath Proof Explorer


Theorem unitsubm

Description: The group of units is a submonoid of the multiplicative monoid of the ring. (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypotheses unitsubm.1
|- U = ( Unit ` R )
unitsubm.2
|- M = ( mulGrp ` R )
Assertion unitsubm
|- ( R e. Ring -> U e. ( SubMnd ` M ) )

Proof

Step Hyp Ref Expression
1 unitsubm.1
 |-  U = ( Unit ` R )
2 unitsubm.2
 |-  M = ( mulGrp ` R )
3 eqid
 |-  ( Base ` R ) = ( Base ` R )
4 3 1 unitss
 |-  U C_ ( Base ` R )
5 4 a1i
 |-  ( R e. Ring -> U C_ ( Base ` R ) )
6 eqid
 |-  ( 1r ` R ) = ( 1r ` R )
7 1 6 1unit
 |-  ( R e. Ring -> ( 1r ` R ) e. U )
8 2 oveq1i
 |-  ( M |`s U ) = ( ( mulGrp ` R ) |`s U )
9 1 8 unitgrp
 |-  ( R e. Ring -> ( M |`s U ) e. Grp )
10 grpmnd
 |-  ( ( M |`s U ) e. Grp -> ( M |`s U ) e. Mnd )
11 9 10 syl
 |-  ( R e. Ring -> ( M |`s U ) e. Mnd )
12 2 ringmgp
 |-  ( R e. Ring -> M e. Mnd )
13 2 3 mgpbas
 |-  ( Base ` R ) = ( Base ` M )
14 2 6 ringidval
 |-  ( 1r ` R ) = ( 0g ` M )
15 eqid
 |-  ( M |`s U ) = ( M |`s U )
16 13 14 15 issubm2
 |-  ( M e. Mnd -> ( U e. ( SubMnd ` M ) <-> ( U C_ ( Base ` R ) /\ ( 1r ` R ) e. U /\ ( M |`s U ) e. Mnd ) ) )
17 12 16 syl
 |-  ( R e. Ring -> ( U e. ( SubMnd ` M ) <-> ( U C_ ( Base ` R ) /\ ( 1r ` R ) e. U /\ ( M |`s U ) e. Mnd ) ) )
18 5 7 11 17 mpbir3and
 |-  ( R e. Ring -> U e. ( SubMnd ` M ) )