Metamath Proof Explorer


Theorem dvdsr01

Description: In a ring, zero is divisible by all elements. ("Zero divisor" as a term has a somewhat different meaning, see df-rlreg .) (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses dvdsr0.b B=BaseR
dvdsr0.d ˙=rR
dvdsr0.z 0˙=0R
Assertion dvdsr01 RRingXBX˙0˙

Proof

Step Hyp Ref Expression
1 dvdsr0.b B=BaseR
2 dvdsr0.d ˙=rR
3 dvdsr0.z 0˙=0R
4 1 3 ring0cl RRing0˙B
5 eqid R=R
6 1 5 3 ringlz RRingXB0˙RX=0˙
7 oveq1 x=0˙xRX=0˙RX
8 7 eqeq1d x=0˙xRX=0˙0˙RX=0˙
9 8 rspcev 0˙B0˙RX=0˙xBxRX=0˙
10 4 6 9 syl2an2r RRingXBxBxRX=0˙
11 1 2 5 dvdsr2 XBX˙0˙xBxRX=0˙
12 11 adantl RRingXBX˙0˙xBxRX=0˙
13 10 12 mpbird RRingXBX˙0˙