| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsr0.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
dvdsr0.d |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
| 3 |
|
dvdsr0.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
1 3
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐵 ) |
| 5 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 6 |
1 5 3
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 0 ( .r ‘ 𝑅 ) 𝑋 ) = 0 ) |
| 7 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 ) = ( 0 ( .r ‘ 𝑅 ) 𝑋 ) ) |
| 8 |
7
|
eqeq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 ) = 0 ↔ ( 0 ( .r ‘ 𝑅 ) 𝑋 ) = 0 ) ) |
| 9 |
8
|
rspcev |
⊢ ( ( 0 ∈ 𝐵 ∧ ( 0 ( .r ‘ 𝑅 ) 𝑋 ) = 0 ) → ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 ) = 0 ) |
| 10 |
4 6 9
|
syl2an2r |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 ) = 0 ) |
| 11 |
1 2 5
|
dvdsr2 |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝑋 ∥ 0 ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 ) = 0 ) ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∥ 0 ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 ) = 0 ) ) |
| 13 |
10 12
|
mpbird |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∥ 0 ) |