Metamath Proof Explorer


Theorem mgptopn

Description: Topology of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses mgpbas.1 M=mulGrpR
mgptopn.2 J=TopOpenR
Assertion mgptopn J=TopOpenM

Proof

Step Hyp Ref Expression
1 mgpbas.1 M=mulGrpR
2 mgptopn.2 J=TopOpenR
3 eqid BaseR=BaseR
4 eqid TopSetR=TopSetR
5 3 4 topnval TopSetR𝑡BaseR=TopOpenR
6 1 3 mgpbas BaseR=BaseM
7 1 mgptset TopSetR=TopSetM
8 6 7 topnval TopSetR𝑡BaseR=TopOpenM
9 2 5 8 3eqtr2i J=TopOpenM