Metamath Proof Explorer


Theorem lidlacl

Description: An ideal is closed under addition. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses lidlcl.u U=LIdealR
lidlacl.p +˙=+R
Assertion lidlacl RRingIUXIYIX+˙YI

Proof

Step Hyp Ref Expression
1 lidlcl.u U=LIdealR
2 lidlacl.p +˙=+R
3 rlmplusg +R=+ringLModR
4 2 3 eqtri +˙=+ringLModR
5 4 oveqi X+˙Y=X+ringLModRY
6 rlmlmod RRingringLModRLMod
7 6 adantr RRingIUringLModRLMod
8 simpr RRingIUIU
9 lidlval LIdealR=LSubSpringLModR
10 1 9 eqtri U=LSubSpringLModR
11 8 10 eleqtrdi RRingIUILSubSpringLModR
12 7 11 jca RRingIUringLModRLModILSubSpringLModR
13 eqid +ringLModR=+ringLModR
14 eqid LSubSpringLModR=LSubSpringLModR
15 13 14 lssvacl ringLModRLModILSubSpringLModRXIYIX+ringLModRYI
16 12 15 sylan RRingIUXIYIX+ringLModRYI
17 5 16 eqeltrid RRingIUXIYIX+˙YI