| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lidlcl.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
| 2 |
|
lidlacl.p |
⊢ + = ( +g ‘ 𝑅 ) |
| 3 |
|
rlmplusg |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ ( ringLMod ‘ 𝑅 ) ) |
| 4 |
2 3
|
eqtri |
⊢ + = ( +g ‘ ( ringLMod ‘ 𝑅 ) ) |
| 5 |
4
|
oveqi |
⊢ ( 𝑋 + 𝑌 ) = ( 𝑋 ( +g ‘ ( ringLMod ‘ 𝑅 ) ) 𝑌 ) |
| 6 |
|
rlmlmod |
⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |
| 8 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ∈ 𝑈 ) |
| 9 |
|
lidlval |
⊢ ( LIdeal ‘ 𝑅 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
| 10 |
1 9
|
eqtri |
⊢ 𝑈 = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
| 11 |
8 10
|
eleqtrdi |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ∈ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 12 |
7 11
|
jca |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ 𝐼 ∈ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) ) ) |
| 13 |
|
eqid |
⊢ ( +g ‘ ( ringLMod ‘ 𝑅 ) ) = ( +g ‘ ( ringLMod ‘ 𝑅 ) ) |
| 14 |
|
eqid |
⊢ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
| 15 |
13 14
|
lssvacl |
⊢ ( ( ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ 𝐼 ∈ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) ) ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ) → ( 𝑋 ( +g ‘ ( ringLMod ‘ 𝑅 ) ) 𝑌 ) ∈ 𝐼 ) |
| 16 |
12 15
|
sylan |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ) → ( 𝑋 ( +g ‘ ( ringLMod ‘ 𝑅 ) ) 𝑌 ) ∈ 𝐼 ) |
| 17 |
5 16
|
eqeltrid |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐼 ) |