Metamath Proof Explorer


Theorem islidl

Description: Predicate of being a (left) ideal. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses islidl.s U = LIdeal R
islidl.b B = Base R
islidl.p + ˙ = + R
islidl.t · ˙ = R
Assertion islidl I U I B I x B a I b I x · ˙ a + ˙ b I

Proof

Step Hyp Ref Expression
1 islidl.s U = LIdeal R
2 islidl.b B = Base R
3 islidl.p + ˙ = + R
4 islidl.t · ˙ = R
5 rlmsca2 I R = Scalar ringLMod R
6 baseid Base = Slot Base ndx
7 6 2 strfvi B = Base I R
8 rlmbas Base R = Base ringLMod R
9 2 8 eqtri B = Base ringLMod R
10 rlmplusg + R = + ringLMod R
11 3 10 eqtri + ˙ = + ringLMod R
12 rlmvsca R = ringLMod R
13 4 12 eqtri · ˙ = ringLMod R
14 lidlval LIdeal R = LSubSp ringLMod R
15 1 14 eqtri U = LSubSp ringLMod R
16 5 7 9 11 13 15 islss I U I B I x B a I b I x · ˙ a + ˙ b I