Step |
Hyp |
Ref |
Expression |
1 |
|
rhmpreimaidl.i |
⊢ 𝐼 = ( LIdeal ‘ 𝑅 ) |
2 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝐽 ) ⊆ dom 𝐹 |
3 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
5 |
3 4
|
rhmf |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
6 |
2 5
|
fssdm |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( ◡ 𝐹 “ 𝐽 ) ⊆ ( Base ‘ 𝑅 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → ( ◡ 𝐹 “ 𝐽 ) ⊆ ( Base ‘ 𝑅 ) ) |
8 |
5
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
9 |
8
|
ffund |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → Fun 𝐹 ) |
10 |
|
rhmrcl1 |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring ) |
11 |
10
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → 𝑅 ∈ Ring ) |
12 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
13 |
3 12
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
14 |
11 13
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
15 |
8
|
fdmd |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → dom 𝐹 = ( Base ‘ 𝑅 ) ) |
16 |
14 15
|
eleqtrrd |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → ( 0g ‘ 𝑅 ) ∈ dom 𝐹 ) |
17 |
|
rhmghm |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
18 |
|
ghmmhm |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ) |
19 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
20 |
12 19
|
mhm0 |
⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
21 |
17 18 20
|
3syl |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
23 |
|
rhmrcl2 |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑆 ∈ Ring ) |
24 |
|
eqid |
⊢ ( LIdeal ‘ 𝑆 ) = ( LIdeal ‘ 𝑆 ) |
25 |
24 19
|
lidl0cl |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → ( 0g ‘ 𝑆 ) ∈ 𝐽 ) |
26 |
23 25
|
sylan |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → ( 0g ‘ 𝑆 ) ∈ 𝐽 ) |
27 |
22 26
|
eqeltrd |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ∈ 𝐽 ) |
28 |
|
fvimacnv |
⊢ ( ( Fun 𝐹 ∧ ( 0g ‘ 𝑅 ) ∈ dom 𝐹 ) → ( ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ∈ 𝐽 ↔ ( 0g ‘ 𝑅 ) ∈ ( ◡ 𝐹 “ 𝐽 ) ) ) |
29 |
28
|
biimpa |
⊢ ( ( ( Fun 𝐹 ∧ ( 0g ‘ 𝑅 ) ∈ dom 𝐹 ) ∧ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ∈ 𝐽 ) → ( 0g ‘ 𝑅 ) ∈ ( ◡ 𝐹 “ 𝐽 ) ) |
30 |
9 16 27 29
|
syl21anc |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → ( 0g ‘ 𝑅 ) ∈ ( ◡ 𝐹 “ 𝐽 ) ) |
31 |
30
|
ne0d |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → ( ◡ 𝐹 “ 𝐽 ) ≠ ∅ ) |
32 |
8
|
ffnd |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → 𝐹 Fn ( Base ‘ 𝑅 ) ) |
33 |
32
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → 𝐹 Fn ( Base ‘ 𝑅 ) ) |
34 |
11
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → 𝑅 ∈ Ring ) |
35 |
|
simpllr |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
36 |
6
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ◡ 𝐹 “ 𝐽 ) ⊆ ( Base ‘ 𝑅 ) ) |
37 |
36
|
sselda |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) |
38 |
37
|
adantr |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) |
39 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
40 |
3 39
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ∈ ( Base ‘ 𝑅 ) ) |
41 |
34 35 38 40
|
syl3anc |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ∈ ( Base ‘ 𝑅 ) ) |
42 |
36
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( ◡ 𝐹 “ 𝐽 ) ⊆ ( Base ‘ 𝑅 ) ) |
43 |
42
|
sselda |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → 𝑏 ∈ ( Base ‘ 𝑅 ) ) |
44 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
45 |
3 44
|
ringacl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
46 |
34 41 43 45
|
syl3anc |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
47 |
17
|
ad4antr |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
48 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
49 |
3 44 48
|
ghmlin |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ) |
50 |
47 41 43 49
|
syl3anc |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( 𝐹 ‘ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ) |
51 |
|
simp-4l |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |
52 |
51 23
|
syl |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → 𝑆 ∈ Ring ) |
53 |
|
simpr |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) |
54 |
53
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) |
55 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
56 |
3 39 55
|
rhmmul |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑎 ) ) ) |
57 |
51 35 38 56
|
syl3anc |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑎 ) ) ) |
58 |
8
|
ffvelrnda |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
59 |
58
|
ad2antrr |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
60 |
|
simplr |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) |
61 |
|
elpreima |
⊢ ( 𝐹 Fn ( Base ‘ 𝑅 ) → ( 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ↔ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝐽 ) ) ) |
62 |
61
|
simplbda |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝐽 ) |
63 |
33 60 62
|
syl2anc |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝐽 ) |
64 |
24 4 55
|
lidlmcl |
⊢ ( ( ( 𝑆 ∈ Ring ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝐽 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑎 ) ) ∈ 𝐽 ) |
65 |
52 54 59 63 64
|
syl22anc |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑎 ) ) ∈ 𝐽 ) |
66 |
57 65
|
eqeltrd |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ) ∈ 𝐽 ) |
67 |
|
simpr |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) |
68 |
|
elpreima |
⊢ ( 𝐹 Fn ( Base ‘ 𝑅 ) → ( 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ↔ ( 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝐽 ) ) ) |
69 |
68
|
simplbda |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝐽 ) |
70 |
33 67 69
|
syl2anc |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝐽 ) |
71 |
24 48
|
lidlacl |
⊢ ( ( ( 𝑆 ∈ Ring ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ) ∈ 𝐽 ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝐽 ) ) → ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ∈ 𝐽 ) |
72 |
52 54 66 70 71
|
syl22anc |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ∈ 𝐽 ) |
73 |
50 72
|
eqeltrd |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( 𝐹 ‘ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ) ∈ 𝐽 ) |
74 |
33 46 73
|
elpreimad |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝐽 ) ) |
75 |
74
|
anasss |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝐽 ) ) |
76 |
75
|
ralrimivva |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ∀ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ∀ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝐽 ) ) |
77 |
76
|
ralrimiva |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ∀ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝐽 ) ) |
78 |
1 3 44 39
|
islidl |
⊢ ( ( ◡ 𝐹 “ 𝐽 ) ∈ 𝐼 ↔ ( ( ◡ 𝐹 “ 𝐽 ) ⊆ ( Base ‘ 𝑅 ) ∧ ( ◡ 𝐹 “ 𝐽 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑎 ∈ ( ◡ 𝐹 “ 𝐽 ) ∀ 𝑏 ∈ ( ◡ 𝐹 “ 𝐽 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝐽 ) ) ) |
79 |
7 31 77 78
|
syl3anbrc |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑆 ) ) → ( ◡ 𝐹 “ 𝐽 ) ∈ 𝐼 ) |