Metamath Proof Explorer


Theorem elpreima

Description: Membership in the preimage of a set under a function. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion elpreima ( 𝐹 Fn 𝐴 → ( 𝐵 ∈ ( 𝐹𝐶 ) ↔ ( 𝐵𝐴 ∧ ( 𝐹𝐵 ) ∈ 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 cnvimass ( 𝐹𝐶 ) ⊆ dom 𝐹
2 1 sseli ( 𝐵 ∈ ( 𝐹𝐶 ) → 𝐵 ∈ dom 𝐹 )
3 fndm ( 𝐹 Fn 𝐴 → dom 𝐹 = 𝐴 )
4 3 eleq2d ( 𝐹 Fn 𝐴 → ( 𝐵 ∈ dom 𝐹𝐵𝐴 ) )
5 2 4 syl5ib ( 𝐹 Fn 𝐴 → ( 𝐵 ∈ ( 𝐹𝐶 ) → 𝐵𝐴 ) )
6 fnfun ( 𝐹 Fn 𝐴 → Fun 𝐹 )
7 fvimacnvi ( ( Fun 𝐹𝐵 ∈ ( 𝐹𝐶 ) ) → ( 𝐹𝐵 ) ∈ 𝐶 )
8 6 7 sylan ( ( 𝐹 Fn 𝐴𝐵 ∈ ( 𝐹𝐶 ) ) → ( 𝐹𝐵 ) ∈ 𝐶 )
9 8 ex ( 𝐹 Fn 𝐴 → ( 𝐵 ∈ ( 𝐹𝐶 ) → ( 𝐹𝐵 ) ∈ 𝐶 ) )
10 5 9 jcad ( 𝐹 Fn 𝐴 → ( 𝐵 ∈ ( 𝐹𝐶 ) → ( 𝐵𝐴 ∧ ( 𝐹𝐵 ) ∈ 𝐶 ) ) )
11 fvimacnv ( ( Fun 𝐹𝐵 ∈ dom 𝐹 ) → ( ( 𝐹𝐵 ) ∈ 𝐶𝐵 ∈ ( 𝐹𝐶 ) ) )
12 11 funfni ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( ( 𝐹𝐵 ) ∈ 𝐶𝐵 ∈ ( 𝐹𝐶 ) ) )
13 12 biimpd ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( ( 𝐹𝐵 ) ∈ 𝐶𝐵 ∈ ( 𝐹𝐶 ) ) )
14 13 expimpd ( 𝐹 Fn 𝐴 → ( ( 𝐵𝐴 ∧ ( 𝐹𝐵 ) ∈ 𝐶 ) → 𝐵 ∈ ( 𝐹𝐶 ) ) )
15 10 14 impbid ( 𝐹 Fn 𝐴 → ( 𝐵 ∈ ( 𝐹𝐶 ) ↔ ( 𝐵𝐴 ∧ ( 𝐹𝐵 ) ∈ 𝐶 ) ) )