Step |
Hyp |
Ref |
Expression |
1 |
|
cnvimass |
|- ( `' F " C ) C_ dom F |
2 |
1
|
sseli |
|- ( B e. ( `' F " C ) -> B e. dom F ) |
3 |
|
fndm |
|- ( F Fn A -> dom F = A ) |
4 |
3
|
eleq2d |
|- ( F Fn A -> ( B e. dom F <-> B e. A ) ) |
5 |
2 4
|
syl5ib |
|- ( F Fn A -> ( B e. ( `' F " C ) -> B e. A ) ) |
6 |
|
fnfun |
|- ( F Fn A -> Fun F ) |
7 |
|
fvimacnvi |
|- ( ( Fun F /\ B e. ( `' F " C ) ) -> ( F ` B ) e. C ) |
8 |
6 7
|
sylan |
|- ( ( F Fn A /\ B e. ( `' F " C ) ) -> ( F ` B ) e. C ) |
9 |
8
|
ex |
|- ( F Fn A -> ( B e. ( `' F " C ) -> ( F ` B ) e. C ) ) |
10 |
5 9
|
jcad |
|- ( F Fn A -> ( B e. ( `' F " C ) -> ( B e. A /\ ( F ` B ) e. C ) ) ) |
11 |
|
fvimacnv |
|- ( ( Fun F /\ B e. dom F ) -> ( ( F ` B ) e. C <-> B e. ( `' F " C ) ) ) |
12 |
11
|
funfni |
|- ( ( F Fn A /\ B e. A ) -> ( ( F ` B ) e. C <-> B e. ( `' F " C ) ) ) |
13 |
12
|
biimpd |
|- ( ( F Fn A /\ B e. A ) -> ( ( F ` B ) e. C -> B e. ( `' F " C ) ) ) |
14 |
13
|
expimpd |
|- ( F Fn A -> ( ( B e. A /\ ( F ` B ) e. C ) -> B e. ( `' F " C ) ) ) |
15 |
10 14
|
impbid |
|- ( F Fn A -> ( B e. ( `' F " C ) <-> ( B e. A /\ ( F ` B ) e. C ) ) ) |