Metamath Proof Explorer


Theorem elpreima

Description: Membership in the preimage of a set under a function. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion elpreima FFnABF-1CBAFBC

Proof

Step Hyp Ref Expression
1 cnvimass F-1CdomF
2 1 sseli BF-1CBdomF
3 fndm FFnAdomF=A
4 3 eleq2d FFnABdomFBA
5 2 4 imbitrid FFnABF-1CBA
6 fnfun FFnAFunF
7 fvimacnvi FunFBF-1CFBC
8 6 7 sylan FFnABF-1CFBC
9 8 ex FFnABF-1CFBC
10 5 9 jcad FFnABF-1CBAFBC
11 fvimacnv FunFBdomFFBCBF-1C
12 11 funfni FFnABAFBCBF-1C
13 12 biimpd FFnABAFBCBF-1C
14 13 expimpd FFnABAFBCBF-1C
15 10 14 impbid FFnABF-1CBAFBC