| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmpreimaidl.i |
|- I = ( LIdeal ` R ) |
| 2 |
|
cnvimass |
|- ( `' F " J ) C_ dom F |
| 3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 4 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 5 |
3 4
|
rhmf |
|- ( F e. ( R RingHom S ) -> F : ( Base ` R ) --> ( Base ` S ) ) |
| 6 |
2 5
|
fssdm |
|- ( F e. ( R RingHom S ) -> ( `' F " J ) C_ ( Base ` R ) ) |
| 7 |
6
|
adantr |
|- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( `' F " J ) C_ ( Base ` R ) ) |
| 8 |
5
|
adantr |
|- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> F : ( Base ` R ) --> ( Base ` S ) ) |
| 9 |
8
|
ffund |
|- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> Fun F ) |
| 10 |
|
rhmrcl1 |
|- ( F e. ( R RingHom S ) -> R e. Ring ) |
| 11 |
10
|
adantr |
|- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> R e. Ring ) |
| 12 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 13 |
3 12
|
ring0cl |
|- ( R e. Ring -> ( 0g ` R ) e. ( Base ` R ) ) |
| 14 |
11 13
|
syl |
|- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( 0g ` R ) e. ( Base ` R ) ) |
| 15 |
8
|
fdmd |
|- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> dom F = ( Base ` R ) ) |
| 16 |
14 15
|
eleqtrrd |
|- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( 0g ` R ) e. dom F ) |
| 17 |
|
rhmghm |
|- ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) |
| 18 |
|
ghmmhm |
|- ( F e. ( R GrpHom S ) -> F e. ( R MndHom S ) ) |
| 19 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
| 20 |
12 19
|
mhm0 |
|- ( F e. ( R MndHom S ) -> ( F ` ( 0g ` R ) ) = ( 0g ` S ) ) |
| 21 |
17 18 20
|
3syl |
|- ( F e. ( R RingHom S ) -> ( F ` ( 0g ` R ) ) = ( 0g ` S ) ) |
| 22 |
21
|
adantr |
|- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( F ` ( 0g ` R ) ) = ( 0g ` S ) ) |
| 23 |
|
rhmrcl2 |
|- ( F e. ( R RingHom S ) -> S e. Ring ) |
| 24 |
|
eqid |
|- ( LIdeal ` S ) = ( LIdeal ` S ) |
| 25 |
24 19
|
lidl0cl |
|- ( ( S e. Ring /\ J e. ( LIdeal ` S ) ) -> ( 0g ` S ) e. J ) |
| 26 |
23 25
|
sylan |
|- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( 0g ` S ) e. J ) |
| 27 |
22 26
|
eqeltrd |
|- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( F ` ( 0g ` R ) ) e. J ) |
| 28 |
|
fvimacnv |
|- ( ( Fun F /\ ( 0g ` R ) e. dom F ) -> ( ( F ` ( 0g ` R ) ) e. J <-> ( 0g ` R ) e. ( `' F " J ) ) ) |
| 29 |
28
|
biimpa |
|- ( ( ( Fun F /\ ( 0g ` R ) e. dom F ) /\ ( F ` ( 0g ` R ) ) e. J ) -> ( 0g ` R ) e. ( `' F " J ) ) |
| 30 |
9 16 27 29
|
syl21anc |
|- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( 0g ` R ) e. ( `' F " J ) ) |
| 31 |
30
|
ne0d |
|- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( `' F " J ) =/= (/) ) |
| 32 |
8
|
ffnd |
|- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> F Fn ( Base ` R ) ) |
| 33 |
32
|
ad3antrrr |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> F Fn ( Base ` R ) ) |
| 34 |
11
|
ad3antrrr |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> R e. Ring ) |
| 35 |
|
simpllr |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> x e. ( Base ` R ) ) |
| 36 |
6
|
ad2antrr |
|- ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) -> ( `' F " J ) C_ ( Base ` R ) ) |
| 37 |
36
|
sselda |
|- ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) -> a e. ( Base ` R ) ) |
| 38 |
37
|
adantr |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> a e. ( Base ` R ) ) |
| 39 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 40 |
3 39
|
ringcl |
|- ( ( R e. Ring /\ x e. ( Base ` R ) /\ a e. ( Base ` R ) ) -> ( x ( .r ` R ) a ) e. ( Base ` R ) ) |
| 41 |
34 35 38 40
|
syl3anc |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( x ( .r ` R ) a ) e. ( Base ` R ) ) |
| 42 |
36
|
adantr |
|- ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) -> ( `' F " J ) C_ ( Base ` R ) ) |
| 43 |
42
|
sselda |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> b e. ( Base ` R ) ) |
| 44 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 45 |
3 44
|
ringacl |
|- ( ( R e. Ring /\ ( x ( .r ` R ) a ) e. ( Base ` R ) /\ b e. ( Base ` R ) ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. ( Base ` R ) ) |
| 46 |
34 41 43 45
|
syl3anc |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. ( Base ` R ) ) |
| 47 |
17
|
ad4antr |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> F e. ( R GrpHom S ) ) |
| 48 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
| 49 |
3 44 48
|
ghmlin |
|- ( ( F e. ( R GrpHom S ) /\ ( x ( .r ` R ) a ) e. ( Base ` R ) /\ b e. ( Base ` R ) ) -> ( F ` ( ( x ( .r ` R ) a ) ( +g ` R ) b ) ) = ( ( F ` ( x ( .r ` R ) a ) ) ( +g ` S ) ( F ` b ) ) ) |
| 50 |
47 41 43 49
|
syl3anc |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( F ` ( ( x ( .r ` R ) a ) ( +g ` R ) b ) ) = ( ( F ` ( x ( .r ` R ) a ) ) ( +g ` S ) ( F ` b ) ) ) |
| 51 |
|
simp-4l |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> F e. ( R RingHom S ) ) |
| 52 |
51 23
|
syl |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> S e. Ring ) |
| 53 |
|
simpr |
|- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> J e. ( LIdeal ` S ) ) |
| 54 |
53
|
ad3antrrr |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> J e. ( LIdeal ` S ) ) |
| 55 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
| 56 |
3 39 55
|
rhmmul |
|- ( ( F e. ( R RingHom S ) /\ x e. ( Base ` R ) /\ a e. ( Base ` R ) ) -> ( F ` ( x ( .r ` R ) a ) ) = ( ( F ` x ) ( .r ` S ) ( F ` a ) ) ) |
| 57 |
51 35 38 56
|
syl3anc |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( F ` ( x ( .r ` R ) a ) ) = ( ( F ` x ) ( .r ` S ) ( F ` a ) ) ) |
| 58 |
8
|
ffvelcdmda |
|- ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) -> ( F ` x ) e. ( Base ` S ) ) |
| 59 |
58
|
ad2antrr |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( F ` x ) e. ( Base ` S ) ) |
| 60 |
|
simplr |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> a e. ( `' F " J ) ) |
| 61 |
|
elpreima |
|- ( F Fn ( Base ` R ) -> ( a e. ( `' F " J ) <-> ( a e. ( Base ` R ) /\ ( F ` a ) e. J ) ) ) |
| 62 |
61
|
simplbda |
|- ( ( F Fn ( Base ` R ) /\ a e. ( `' F " J ) ) -> ( F ` a ) e. J ) |
| 63 |
33 60 62
|
syl2anc |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( F ` a ) e. J ) |
| 64 |
24 4 55
|
lidlmcl |
|- ( ( ( S e. Ring /\ J e. ( LIdeal ` S ) ) /\ ( ( F ` x ) e. ( Base ` S ) /\ ( F ` a ) e. J ) ) -> ( ( F ` x ) ( .r ` S ) ( F ` a ) ) e. J ) |
| 65 |
52 54 59 63 64
|
syl22anc |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( ( F ` x ) ( .r ` S ) ( F ` a ) ) e. J ) |
| 66 |
57 65
|
eqeltrd |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( F ` ( x ( .r ` R ) a ) ) e. J ) |
| 67 |
|
simpr |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> b e. ( `' F " J ) ) |
| 68 |
|
elpreima |
|- ( F Fn ( Base ` R ) -> ( b e. ( `' F " J ) <-> ( b e. ( Base ` R ) /\ ( F ` b ) e. J ) ) ) |
| 69 |
68
|
simplbda |
|- ( ( F Fn ( Base ` R ) /\ b e. ( `' F " J ) ) -> ( F ` b ) e. J ) |
| 70 |
33 67 69
|
syl2anc |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( F ` b ) e. J ) |
| 71 |
24 48
|
lidlacl |
|- ( ( ( S e. Ring /\ J e. ( LIdeal ` S ) ) /\ ( ( F ` ( x ( .r ` R ) a ) ) e. J /\ ( F ` b ) e. J ) ) -> ( ( F ` ( x ( .r ` R ) a ) ) ( +g ` S ) ( F ` b ) ) e. J ) |
| 72 |
52 54 66 70 71
|
syl22anc |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( ( F ` ( x ( .r ` R ) a ) ) ( +g ` S ) ( F ` b ) ) e. J ) |
| 73 |
50 72
|
eqeltrd |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( F ` ( ( x ( .r ` R ) a ) ( +g ` R ) b ) ) e. J ) |
| 74 |
33 46 73
|
elpreimad |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ a e. ( `' F " J ) ) /\ b e. ( `' F " J ) ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. ( `' F " J ) ) |
| 75 |
74
|
anasss |
|- ( ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) /\ ( a e. ( `' F " J ) /\ b e. ( `' F " J ) ) ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. ( `' F " J ) ) |
| 76 |
75
|
ralrimivva |
|- ( ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) /\ x e. ( Base ` R ) ) -> A. a e. ( `' F " J ) A. b e. ( `' F " J ) ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. ( `' F " J ) ) |
| 77 |
76
|
ralrimiva |
|- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> A. x e. ( Base ` R ) A. a e. ( `' F " J ) A. b e. ( `' F " J ) ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. ( `' F " J ) ) |
| 78 |
1 3 44 39
|
islidl |
|- ( ( `' F " J ) e. I <-> ( ( `' F " J ) C_ ( Base ` R ) /\ ( `' F " J ) =/= (/) /\ A. x e. ( Base ` R ) A. a e. ( `' F " J ) A. b e. ( `' F " J ) ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. ( `' F " J ) ) ) |
| 79 |
7 31 77 78
|
syl3anbrc |
|- ( ( F e. ( R RingHom S ) /\ J e. ( LIdeal ` S ) ) -> ( `' F " J ) e. I ) |