Metamath Proof Explorer


Theorem kerlidl

Description: The kernel of a ring homomorphism is an ideal. (Contributed by Thierry Arnoux, 1-Jul-2024)

Ref Expression
Hypotheses kerlidl.i
|- I = ( LIdeal ` R )
kerlidl.1
|- .0. = ( 0g ` S )
Assertion kerlidl
|- ( F e. ( R RingHom S ) -> ( `' F " { .0. } ) e. I )

Proof

Step Hyp Ref Expression
1 kerlidl.i
 |-  I = ( LIdeal ` R )
2 kerlidl.1
 |-  .0. = ( 0g ` S )
3 rhmrcl2
 |-  ( F e. ( R RingHom S ) -> S e. Ring )
4 eqid
 |-  ( LIdeal ` S ) = ( LIdeal ` S )
5 4 2 lidl0
 |-  ( S e. Ring -> { .0. } e. ( LIdeal ` S ) )
6 3 5 syl
 |-  ( F e. ( R RingHom S ) -> { .0. } e. ( LIdeal ` S ) )
7 1 rhmpreimaidl
 |-  ( ( F e. ( R RingHom S ) /\ { .0. } e. ( LIdeal ` S ) ) -> ( `' F " { .0. } ) e. I )
8 6 7 mpdan
 |-  ( F e. ( R RingHom S ) -> ( `' F " { .0. } ) e. I )