Description: The kernel of a ring homomorphism is an ideal. (Contributed by Thierry Arnoux, 1-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | kerlidl.i | |- I = ( LIdeal ` R ) |
|
kerlidl.1 | |- .0. = ( 0g ` S ) |
||
Assertion | kerlidl | |- ( F e. ( R RingHom S ) -> ( `' F " { .0. } ) e. I ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kerlidl.i | |- I = ( LIdeal ` R ) |
|
2 | kerlidl.1 | |- .0. = ( 0g ` S ) |
|
3 | rhmrcl2 | |- ( F e. ( R RingHom S ) -> S e. Ring ) |
|
4 | eqid | |- ( LIdeal ` S ) = ( LIdeal ` S ) |
|
5 | 4 2 | lidl0 | |- ( S e. Ring -> { .0. } e. ( LIdeal ` S ) ) |
6 | 3 5 | syl | |- ( F e. ( R RingHom S ) -> { .0. } e. ( LIdeal ` S ) ) |
7 | 1 | rhmpreimaidl | |- ( ( F e. ( R RingHom S ) /\ { .0. } e. ( LIdeal ` S ) ) -> ( `' F " { .0. } ) e. I ) |
8 | 6 7 | mpdan | |- ( F e. ( R RingHom S ) -> ( `' F " { .0. } ) e. I ) |