Description: The kernel of a ring homomorphism is an ideal. (Contributed by Thierry Arnoux, 1-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | kerlidl.i | |- I = ( LIdeal ` R ) |
|
| kerlidl.1 | |- .0. = ( 0g ` S ) |
||
| Assertion | kerlidl | |- ( F e. ( R RingHom S ) -> ( `' F " { .0. } ) e. I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kerlidl.i | |- I = ( LIdeal ` R ) |
|
| 2 | kerlidl.1 | |- .0. = ( 0g ` S ) |
|
| 3 | rhmrcl2 | |- ( F e. ( R RingHom S ) -> S e. Ring ) |
|
| 4 | eqid | |- ( LIdeal ` S ) = ( LIdeal ` S ) |
|
| 5 | 4 2 | lidl0 | |- ( S e. Ring -> { .0. } e. ( LIdeal ` S ) ) |
| 6 | 3 5 | syl | |- ( F e. ( R RingHom S ) -> { .0. } e. ( LIdeal ` S ) ) |
| 7 | 1 | rhmpreimaidl | |- ( ( F e. ( R RingHom S ) /\ { .0. } e. ( LIdeal ` S ) ) -> ( `' F " { .0. } ) e. I ) |
| 8 | 6 7 | mpdan | |- ( F e. ( R RingHom S ) -> ( `' F " { .0. } ) e. I ) |