Metamath Proof Explorer


Theorem kerlidl

Description: The kernel of a ring homomorphism is an ideal. (Contributed by Thierry Arnoux, 1-Jul-2024)

Ref Expression
Hypotheses kerlidl.i I = LIdeal R
kerlidl.1 0 ˙ = 0 S
Assertion kerlidl F R RingHom S F -1 0 ˙ I

Proof

Step Hyp Ref Expression
1 kerlidl.i I = LIdeal R
2 kerlidl.1 0 ˙ = 0 S
3 rhmrcl2 F R RingHom S S Ring
4 eqid LIdeal S = LIdeal S
5 4 2 lidl0 S Ring 0 ˙ LIdeal S
6 3 5 syl F R RingHom S 0 ˙ LIdeal S
7 1 rhmpreimaidl F R RingHom S 0 ˙ LIdeal S F -1 0 ˙ I
8 6 7 mpdan F R RingHom S F -1 0 ˙ I