Metamath Proof Explorer


Theorem 0ringidl

Description: The zero ideal is the only ideal of the trivial ring. (Contributed by Thierry Arnoux, 1-Jul-2024)

Ref Expression
Hypotheses 0ringidl.1 B=BaseR
0ringidl.2 0˙=0R
Assertion 0ringidl RRingB=1LIdealR=0˙

Proof

Step Hyp Ref Expression
1 0ringidl.1 B=BaseR
2 0ringidl.2 0˙=0R
3 eqid LIdealR=LIdealR
4 1 3 lidlss iLIdealRiB
5 4 adantl RRingB=1iLIdealRiB
6 1 2 0ring RRingB=1B=0˙
7 6 adantr RRingB=1iLIdealRB=0˙
8 5 7 sseqtrd RRingB=1iLIdealRi0˙
9 3 2 lidl0cl RRingiLIdealR0˙i
10 9 adantlr RRingB=1iLIdealR0˙i
11 10 snssd RRingB=1iLIdealR0˙i
12 8 11 eqssd RRingB=1iLIdealRi=0˙
13 3 2 lidl0 RRing0˙LIdealR
14 13 adantr RRingB=10˙LIdealR
15 12 14 eqsnd RRingB=1LIdealR=0˙