| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ringidl.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
0ringidl.2 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 3 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 4 |
1 3
|
lidlss |
⊢ ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) → 𝑖 ⊆ 𝐵 ) |
| 5 |
4
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑖 ⊆ 𝐵 ) |
| 6 |
1 2
|
0ring |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 𝐵 = { 0 } ) |
| 7 |
6
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐵 = { 0 } ) |
| 8 |
5 7
|
sseqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑖 ⊆ { 0 } ) |
| 9 |
3 2
|
lidl0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → 0 ∈ 𝑖 ) |
| 10 |
9
|
adantlr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → 0 ∈ 𝑖 ) |
| 11 |
10
|
snssd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → { 0 } ⊆ 𝑖 ) |
| 12 |
8 11
|
eqssd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑖 = { 0 } ) |
| 13 |
3 2
|
lidl0 |
⊢ ( 𝑅 ∈ Ring → { 0 } ∈ ( LIdeal ‘ 𝑅 ) ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → { 0 } ∈ ( LIdeal ‘ 𝑅 ) ) |
| 15 |
12 14
|
eqsnd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( LIdeal ‘ 𝑅 ) = { { 0 } } ) |