Metamath Proof Explorer


Theorem 0ringidl

Description: The zero ideal is the only ideal of the trivial ring. (Contributed by Thierry Arnoux, 1-Jul-2024)

Ref Expression
Hypotheses 0ringidl.1 𝐵 = ( Base ‘ 𝑅 )
0ringidl.2 0 = ( 0g𝑅 )
Assertion 0ringidl ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( LIdeal ‘ 𝑅 ) = { { 0 } } )

Proof

Step Hyp Ref Expression
1 0ringidl.1 𝐵 = ( Base ‘ 𝑅 )
2 0ringidl.2 0 = ( 0g𝑅 )
3 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
4 1 3 lidlss ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) → 𝑖𝐵 )
5 4 adantl ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑖𝐵 )
6 1 2 0ring ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 𝐵 = { 0 } )
7 6 adantr ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐵 = { 0 } )
8 5 7 sseqtrd ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑖 ⊆ { 0 } )
9 3 2 lidl0cl ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → 0𝑖 )
10 9 adantlr ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → 0𝑖 )
11 10 snssd ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → { 0 } ⊆ 𝑖 )
12 8 11 eqssd ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑖 = { 0 } )
13 3 2 lidl0 ( 𝑅 ∈ Ring → { 0 } ∈ ( LIdeal ‘ 𝑅 ) )
14 13 adantr ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → { 0 } ∈ ( LIdeal ‘ 𝑅 ) )
15 12 14 eqsnd ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( LIdeal ‘ 𝑅 ) = { { 0 } } )