Description: Deduce that a set is a singleton. (Contributed by Thierry Arnoux, 10-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqsnd.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 = 𝐵 ) | |
eqsnd.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | ||
Assertion | eqsnd | ⊢ ( 𝜑 → 𝐴 = { 𝐵 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsnd.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 = 𝐵 ) | |
2 | eqsnd.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
3 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → 𝑥 = 𝐵 ) | |
4 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → 𝐵 ∈ 𝐴 ) |
5 | 3 4 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → 𝑥 ∈ 𝐴 ) |
6 | 1 5 | impbida | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 = 𝐵 ) ) |
7 | velsn | ⊢ ( 𝑥 ∈ { 𝐵 } ↔ 𝑥 = 𝐵 ) | |
8 | 6 7 | bitr4di | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ { 𝐵 } ) ) |
9 | 8 | eqrdv | ⊢ ( 𝜑 → 𝐴 = { 𝐵 } ) |