Metamath Proof Explorer


Theorem eqsnd

Description: Deduce that a set is a singleton. (Contributed by Thierry Arnoux, 10-May-2023)

Ref Expression
Hypotheses eqsnd.1 ( ( 𝜑𝑥𝐴 ) → 𝑥 = 𝐵 )
eqsnd.2 ( 𝜑𝐵𝐴 )
Assertion eqsnd ( 𝜑𝐴 = { 𝐵 } )

Proof

Step Hyp Ref Expression
1 eqsnd.1 ( ( 𝜑𝑥𝐴 ) → 𝑥 = 𝐵 )
2 eqsnd.2 ( 𝜑𝐵𝐴 )
3 simpr ( ( 𝜑𝑥 = 𝐵 ) → 𝑥 = 𝐵 )
4 2 adantr ( ( 𝜑𝑥 = 𝐵 ) → 𝐵𝐴 )
5 3 4 eqeltrd ( ( 𝜑𝑥 = 𝐵 ) → 𝑥𝐴 )
6 1 5 impbida ( 𝜑 → ( 𝑥𝐴𝑥 = 𝐵 ) )
7 velsn ( 𝑥 ∈ { 𝐵 } ↔ 𝑥 = 𝐵 )
8 6 7 bitr4di ( 𝜑 → ( 𝑥𝐴𝑥 ∈ { 𝐵 } ) )
9 8 eqrdv ( 𝜑𝐴 = { 𝐵 } )