Metamath Proof Explorer


Theorem eqsnd

Description: Deduce that a set is a singleton. (Contributed by Thierry Arnoux, 10-May-2023)

Ref Expression
Hypotheses eqsnd.1 φxAx=B
eqsnd.2 φBA
Assertion eqsnd φA=B

Proof

Step Hyp Ref Expression
1 eqsnd.1 φxAx=B
2 eqsnd.2 φBA
3 simpr φx=Bx=B
4 2 adantr φx=BBA
5 3 4 eqeltrd φx=BxA
6 1 5 impbida φxAx=B
7 velsn xBx=B
8 6 7 bitr4di φxAxB
9 8 eqrdv φA=B