| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ringidl.1 |
|- B = ( Base ` R ) |
| 2 |
|
0ringidl.2 |
|- .0. = ( 0g ` R ) |
| 3 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 4 |
1 3
|
lidlss |
|- ( i e. ( LIdeal ` R ) -> i C_ B ) |
| 5 |
4
|
adantl |
|- ( ( ( R e. Ring /\ ( # ` B ) = 1 ) /\ i e. ( LIdeal ` R ) ) -> i C_ B ) |
| 6 |
1 2
|
0ring |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> B = { .0. } ) |
| 7 |
6
|
adantr |
|- ( ( ( R e. Ring /\ ( # ` B ) = 1 ) /\ i e. ( LIdeal ` R ) ) -> B = { .0. } ) |
| 8 |
5 7
|
sseqtrd |
|- ( ( ( R e. Ring /\ ( # ` B ) = 1 ) /\ i e. ( LIdeal ` R ) ) -> i C_ { .0. } ) |
| 9 |
3 2
|
lidl0cl |
|- ( ( R e. Ring /\ i e. ( LIdeal ` R ) ) -> .0. e. i ) |
| 10 |
9
|
adantlr |
|- ( ( ( R e. Ring /\ ( # ` B ) = 1 ) /\ i e. ( LIdeal ` R ) ) -> .0. e. i ) |
| 11 |
10
|
snssd |
|- ( ( ( R e. Ring /\ ( # ` B ) = 1 ) /\ i e. ( LIdeal ` R ) ) -> { .0. } C_ i ) |
| 12 |
8 11
|
eqssd |
|- ( ( ( R e. Ring /\ ( # ` B ) = 1 ) /\ i e. ( LIdeal ` R ) ) -> i = { .0. } ) |
| 13 |
3 2
|
lidl0 |
|- ( R e. Ring -> { .0. } e. ( LIdeal ` R ) ) |
| 14 |
13
|
adantr |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> { .0. } e. ( LIdeal ` R ) ) |
| 15 |
12 14
|
eqsnd |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ( LIdeal ` R ) = { { .0. } } ) |