| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ringidl.1 |  |-  B = ( Base ` R ) | 
						
							| 2 |  | 0ringidl.2 |  |-  .0. = ( 0g ` R ) | 
						
							| 3 |  | eqid |  |-  ( LIdeal ` R ) = ( LIdeal ` R ) | 
						
							| 4 | 1 3 | lidlss |  |-  ( i e. ( LIdeal ` R ) -> i C_ B ) | 
						
							| 5 | 4 | adantl |  |-  ( ( ( R e. Ring /\ ( # ` B ) = 1 ) /\ i e. ( LIdeal ` R ) ) -> i C_ B ) | 
						
							| 6 | 1 2 | 0ring |  |-  ( ( R e. Ring /\ ( # ` B ) = 1 ) -> B = { .0. } ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( R e. Ring /\ ( # ` B ) = 1 ) /\ i e. ( LIdeal ` R ) ) -> B = { .0. } ) | 
						
							| 8 | 5 7 | sseqtrd |  |-  ( ( ( R e. Ring /\ ( # ` B ) = 1 ) /\ i e. ( LIdeal ` R ) ) -> i C_ { .0. } ) | 
						
							| 9 | 3 2 | lidl0cl |  |-  ( ( R e. Ring /\ i e. ( LIdeal ` R ) ) -> .0. e. i ) | 
						
							| 10 | 9 | adantlr |  |-  ( ( ( R e. Ring /\ ( # ` B ) = 1 ) /\ i e. ( LIdeal ` R ) ) -> .0. e. i ) | 
						
							| 11 | 10 | snssd |  |-  ( ( ( R e. Ring /\ ( # ` B ) = 1 ) /\ i e. ( LIdeal ` R ) ) -> { .0. } C_ i ) | 
						
							| 12 | 8 11 | eqssd |  |-  ( ( ( R e. Ring /\ ( # ` B ) = 1 ) /\ i e. ( LIdeal ` R ) ) -> i = { .0. } ) | 
						
							| 13 | 3 2 | lidl0 |  |-  ( R e. Ring -> { .0. } e. ( LIdeal ` R ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( R e. Ring /\ ( # ` B ) = 1 ) -> { .0. } e. ( LIdeal ` R ) ) | 
						
							| 15 | 12 14 | eqsnd |  |-  ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ( LIdeal ` R ) = { { .0. } } ) |