Step |
Hyp |
Ref |
Expression |
1 |
|
ghmgrp1 |
|- ( F e. ( S GrpHom T ) -> S e. Grp ) |
2 |
1
|
grpmndd |
|- ( F e. ( S GrpHom T ) -> S e. Mnd ) |
3 |
|
ghmgrp2 |
|- ( F e. ( S GrpHom T ) -> T e. Grp ) |
4 |
3
|
grpmndd |
|- ( F e. ( S GrpHom T ) -> T e. Mnd ) |
5 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
6 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
7 |
5 6
|
ghmf |
|- ( F e. ( S GrpHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
8 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
9 |
|
eqid |
|- ( +g ` T ) = ( +g ` T ) |
10 |
5 8 9
|
ghmlin |
|- ( ( F e. ( S GrpHom T ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
11 |
10
|
3expb |
|- ( ( F e. ( S GrpHom T ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
12 |
11
|
ralrimivva |
|- ( F e. ( S GrpHom T ) -> A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
13 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
14 |
|
eqid |
|- ( 0g ` T ) = ( 0g ` T ) |
15 |
13 14
|
ghmid |
|- ( F e. ( S GrpHom T ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
16 |
7 12 15
|
3jca |
|- ( F e. ( S GrpHom T ) -> ( F : ( Base ` S ) --> ( Base ` T ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) /\ ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) ) |
17 |
5 6 8 9 13 14
|
ismhm |
|- ( F e. ( S MndHom T ) <-> ( ( S e. Mnd /\ T e. Mnd ) /\ ( F : ( Base ` S ) --> ( Base ` T ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) /\ ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) ) ) |
18 |
2 4 16 17
|
syl21anbrc |
|- ( F e. ( S GrpHom T ) -> F e. ( S MndHom T ) ) |