Description: An ideal is a subgroup of the additive group. (Contributed by Mario Carneiro, 14-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lidlcl.u | |
|
Assertion | lidlsubg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlcl.u | |
|
2 | eqid | |
|
3 | 2 1 | lidlss | |
4 | 3 | adantl | |
5 | eqid | |
|
6 | 1 5 | lidl0cl | |
7 | 6 | ne0d | |
8 | eqid | |
|
9 | 1 8 | lidlacl | |
10 | 9 | anassrs | |
11 | 10 | ralrimiva | |
12 | eqid | |
|
13 | 1 12 | lidlnegcl | |
14 | 13 | 3expa | |
15 | 11 14 | jca | |
16 | 15 | ralrimiva | |
17 | ringgrp | |
|
18 | 17 | adantr | |
19 | 2 8 12 | issubg2 | |
20 | 18 19 | syl | |
21 | 4 7 16 20 | mpbir3and | |