Metamath Proof Explorer


Theorem lidlsubg

Description: An ideal is a subgroup of the additive group. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypothesis lidlcl.u U=LIdealR
Assertion lidlsubg RRingIUISubGrpR

Proof

Step Hyp Ref Expression
1 lidlcl.u U=LIdealR
2 eqid BaseR=BaseR
3 2 1 lidlss IUIBaseR
4 3 adantl RRingIUIBaseR
5 eqid 0R=0R
6 1 5 lidl0cl RRingIU0RI
7 6 ne0d RRingIUI
8 eqid +R=+R
9 1 8 lidlacl RRingIUxIyIx+RyI
10 9 anassrs RRingIUxIyIx+RyI
11 10 ralrimiva RRingIUxIyIx+RyI
12 eqid invgR=invgR
13 1 12 lidlnegcl RRingIUxIinvgRxI
14 13 3expa RRingIUxIinvgRxI
15 11 14 jca RRingIUxIyIx+RyIinvgRxI
16 15 ralrimiva RRingIUxIyIx+RyIinvgRxI
17 ringgrp RRingRGrp
18 17 adantr RRingIURGrp
19 2 8 12 issubg2 RGrpISubGrpRIBaseRIxIyIx+RyIinvgRxI
20 18 19 syl RRingIUISubGrpRIBaseRIxIyIx+RyIinvgRxI
21 4 7 16 20 mpbir3and RRingIUISubGrpR