Metamath Proof Explorer


Theorem lidlsubg

Description: An ideal is a subgroup of the additive group. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypothesis lidlcl.u 𝑈 = ( LIdeal ‘ 𝑅 )
Assertion lidlsubg ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 lidlcl.u 𝑈 = ( LIdeal ‘ 𝑅 )
2 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
3 2 1 lidlss ( 𝐼𝑈𝐼 ⊆ ( Base ‘ 𝑅 ) )
4 3 adantl ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → 𝐼 ⊆ ( Base ‘ 𝑅 ) )
5 eqid ( 0g𝑅 ) = ( 0g𝑅 )
6 1 5 lidl0cl ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → ( 0g𝑅 ) ∈ 𝐼 )
7 6 ne0d ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → 𝐼 ≠ ∅ )
8 eqid ( +g𝑅 ) = ( +g𝑅 )
9 1 8 lidlacl ( ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) ∧ ( 𝑥𝐼𝑦𝐼 ) ) → ( 𝑥 ( +g𝑅 ) 𝑦 ) ∈ 𝐼 )
10 9 anassrs ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) ∧ 𝑥𝐼 ) ∧ 𝑦𝐼 ) → ( 𝑥 ( +g𝑅 ) 𝑦 ) ∈ 𝐼 )
11 10 ralrimiva ( ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) ∧ 𝑥𝐼 ) → ∀ 𝑦𝐼 ( 𝑥 ( +g𝑅 ) 𝑦 ) ∈ 𝐼 )
12 eqid ( invg𝑅 ) = ( invg𝑅 )
13 1 12 lidlnegcl ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈𝑥𝐼 ) → ( ( invg𝑅 ) ‘ 𝑥 ) ∈ 𝐼 )
14 13 3expa ( ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) ∧ 𝑥𝐼 ) → ( ( invg𝑅 ) ‘ 𝑥 ) ∈ 𝐼 )
15 11 14 jca ( ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) ∧ 𝑥𝐼 ) → ( ∀ 𝑦𝐼 ( 𝑥 ( +g𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( ( invg𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) )
16 15 ralrimiva ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → ∀ 𝑥𝐼 ( ∀ 𝑦𝐼 ( 𝑥 ( +g𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( ( invg𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) )
17 ringgrp ( 𝑅 ∈ Ring → 𝑅 ∈ Grp )
18 17 adantr ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → 𝑅 ∈ Grp )
19 2 8 12 issubg2 ( 𝑅 ∈ Grp → ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ↔ ( 𝐼 ⊆ ( Base ‘ 𝑅 ) ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑥𝐼 ( ∀ 𝑦𝐼 ( 𝑥 ( +g𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( ( invg𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) ) ) )
20 18 19 syl ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ↔ ( 𝐼 ⊆ ( Base ‘ 𝑅 ) ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑥𝐼 ( ∀ 𝑦𝐼 ( 𝑥 ( +g𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( ( invg𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) ) ) )
21 4 7 16 20 mpbir3and ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) )