| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qusring.u |
|- U = ( R /s ( R ~QG S ) ) |
| 2 |
|
qusring.i |
|- I = ( 2Ideal ` R ) |
| 3 |
|
qus1.o |
|- .1. = ( 1r ` R ) |
| 4 |
1
|
a1i |
|- ( ( R e. Ring /\ S e. I ) -> U = ( R /s ( R ~QG S ) ) ) |
| 5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 6 |
5
|
a1i |
|- ( ( R e. Ring /\ S e. I ) -> ( Base ` R ) = ( Base ` R ) ) |
| 7 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 8 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 9 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 10 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
| 11 |
|
eqid |
|- ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) ) |
| 12 |
9 10 11 2
|
2idlval |
|- I = ( ( LIdeal ` R ) i^i ( LIdeal ` ( oppR ` R ) ) ) |
| 13 |
12
|
elin2 |
|- ( S e. I <-> ( S e. ( LIdeal ` R ) /\ S e. ( LIdeal ` ( oppR ` R ) ) ) ) |
| 14 |
13
|
simplbi |
|- ( S e. I -> S e. ( LIdeal ` R ) ) |
| 15 |
9
|
lidlsubg |
|- ( ( R e. Ring /\ S e. ( LIdeal ` R ) ) -> S e. ( SubGrp ` R ) ) |
| 16 |
14 15
|
sylan2 |
|- ( ( R e. Ring /\ S e. I ) -> S e. ( SubGrp ` R ) ) |
| 17 |
|
eqid |
|- ( R ~QG S ) = ( R ~QG S ) |
| 18 |
5 17
|
eqger |
|- ( S e. ( SubGrp ` R ) -> ( R ~QG S ) Er ( Base ` R ) ) |
| 19 |
16 18
|
syl |
|- ( ( R e. Ring /\ S e. I ) -> ( R ~QG S ) Er ( Base ` R ) ) |
| 20 |
|
ringabl |
|- ( R e. Ring -> R e. Abel ) |
| 21 |
20
|
adantr |
|- ( ( R e. Ring /\ S e. I ) -> R e. Abel ) |
| 22 |
|
ablnsg |
|- ( R e. Abel -> ( NrmSGrp ` R ) = ( SubGrp ` R ) ) |
| 23 |
21 22
|
syl |
|- ( ( R e. Ring /\ S e. I ) -> ( NrmSGrp ` R ) = ( SubGrp ` R ) ) |
| 24 |
16 23
|
eleqtrrd |
|- ( ( R e. Ring /\ S e. I ) -> S e. ( NrmSGrp ` R ) ) |
| 25 |
5 17 7
|
eqgcpbl |
|- ( S e. ( NrmSGrp ` R ) -> ( ( a ( R ~QG S ) c /\ b ( R ~QG S ) d ) -> ( a ( +g ` R ) b ) ( R ~QG S ) ( c ( +g ` R ) d ) ) ) |
| 26 |
24 25
|
syl |
|- ( ( R e. Ring /\ S e. I ) -> ( ( a ( R ~QG S ) c /\ b ( R ~QG S ) d ) -> ( a ( +g ` R ) b ) ( R ~QG S ) ( c ( +g ` R ) d ) ) ) |
| 27 |
5 17 2 8
|
2idlcpbl |
|- ( ( R e. Ring /\ S e. I ) -> ( ( a ( R ~QG S ) c /\ b ( R ~QG S ) d ) -> ( a ( .r ` R ) b ) ( R ~QG S ) ( c ( .r ` R ) d ) ) ) |
| 28 |
|
simpl |
|- ( ( R e. Ring /\ S e. I ) -> R e. Ring ) |
| 29 |
4 6 7 8 3 19 26 27 28
|
qusring2 |
|- ( ( R e. Ring /\ S e. I ) -> ( U e. Ring /\ [ .1. ] ( R ~QG S ) = ( 1r ` U ) ) ) |