Metamath Proof Explorer


Theorem chrnzr

Description: Nonzero rings are precisely those with characteristic not 1. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Assertion chrnzr
|- ( R e. Ring -> ( R e. NzRing <-> ( chr ` R ) =/= 1 ) )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( 1r ` R ) = ( 1r ` R )
2 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
3 1 2 isnzr
 |-  ( R e. NzRing <-> ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) )
4 3 baib
 |-  ( R e. Ring -> ( R e. NzRing <-> ( 1r ` R ) =/= ( 0g ` R ) ) )
5 1z
 |-  1 e. ZZ
6 eqid
 |-  ( chr ` R ) = ( chr ` R )
7 eqid
 |-  ( ZRHom ` R ) = ( ZRHom ` R )
8 6 7 2 chrdvds
 |-  ( ( R e. Ring /\ 1 e. ZZ ) -> ( ( chr ` R ) || 1 <-> ( ( ZRHom ` R ) ` 1 ) = ( 0g ` R ) ) )
9 5 8 mpan2
 |-  ( R e. Ring -> ( ( chr ` R ) || 1 <-> ( ( ZRHom ` R ) ` 1 ) = ( 0g ` R ) ) )
10 6 chrcl
 |-  ( R e. Ring -> ( chr ` R ) e. NN0 )
11 dvds1
 |-  ( ( chr ` R ) e. NN0 -> ( ( chr ` R ) || 1 <-> ( chr ` R ) = 1 ) )
12 10 11 syl
 |-  ( R e. Ring -> ( ( chr ` R ) || 1 <-> ( chr ` R ) = 1 ) )
13 7 1 zrh1
 |-  ( R e. Ring -> ( ( ZRHom ` R ) ` 1 ) = ( 1r ` R ) )
14 13 eqeq1d
 |-  ( R e. Ring -> ( ( ( ZRHom ` R ) ` 1 ) = ( 0g ` R ) <-> ( 1r ` R ) = ( 0g ` R ) ) )
15 9 12 14 3bitr3d
 |-  ( R e. Ring -> ( ( chr ` R ) = 1 <-> ( 1r ` R ) = ( 0g ` R ) ) )
16 15 necon3bid
 |-  ( R e. Ring -> ( ( chr ` R ) =/= 1 <-> ( 1r ` R ) =/= ( 0g ` R ) ) )
17 4 16 bitr4d
 |-  ( R e. Ring -> ( R e. NzRing <-> ( chr ` R ) =/= 1 ) )