| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 2 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 3 |
1 2
|
isnzr |
|- ( R e. NzRing <-> ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) ) |
| 4 |
3
|
baib |
|- ( R e. Ring -> ( R e. NzRing <-> ( 1r ` R ) =/= ( 0g ` R ) ) ) |
| 5 |
|
1z |
|- 1 e. ZZ |
| 6 |
|
eqid |
|- ( chr ` R ) = ( chr ` R ) |
| 7 |
|
eqid |
|- ( ZRHom ` R ) = ( ZRHom ` R ) |
| 8 |
6 7 2
|
chrdvds |
|- ( ( R e. Ring /\ 1 e. ZZ ) -> ( ( chr ` R ) || 1 <-> ( ( ZRHom ` R ) ` 1 ) = ( 0g ` R ) ) ) |
| 9 |
5 8
|
mpan2 |
|- ( R e. Ring -> ( ( chr ` R ) || 1 <-> ( ( ZRHom ` R ) ` 1 ) = ( 0g ` R ) ) ) |
| 10 |
6
|
chrcl |
|- ( R e. Ring -> ( chr ` R ) e. NN0 ) |
| 11 |
|
dvds1 |
|- ( ( chr ` R ) e. NN0 -> ( ( chr ` R ) || 1 <-> ( chr ` R ) = 1 ) ) |
| 12 |
10 11
|
syl |
|- ( R e. Ring -> ( ( chr ` R ) || 1 <-> ( chr ` R ) = 1 ) ) |
| 13 |
7 1
|
zrh1 |
|- ( R e. Ring -> ( ( ZRHom ` R ) ` 1 ) = ( 1r ` R ) ) |
| 14 |
13
|
eqeq1d |
|- ( R e. Ring -> ( ( ( ZRHom ` R ) ` 1 ) = ( 0g ` R ) <-> ( 1r ` R ) = ( 0g ` R ) ) ) |
| 15 |
9 12 14
|
3bitr3d |
|- ( R e. Ring -> ( ( chr ` R ) = 1 <-> ( 1r ` R ) = ( 0g ` R ) ) ) |
| 16 |
15
|
necon3bid |
|- ( R e. Ring -> ( ( chr ` R ) =/= 1 <-> ( 1r ` R ) =/= ( 0g ` R ) ) ) |
| 17 |
4 16
|
bitr4d |
|- ( R e. Ring -> ( R e. NzRing <-> ( chr ` R ) =/= 1 ) ) |