Description: Property of a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isnzr.o | |- .1. = ( 1r ` R ) |
|
isnzr.z | |- .0. = ( 0g ` R ) |
||
Assertion | isnzr | |- ( R e. NzRing <-> ( R e. Ring /\ .1. =/= .0. ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnzr.o | |- .1. = ( 1r ` R ) |
|
2 | isnzr.z | |- .0. = ( 0g ` R ) |
|
3 | fveq2 | |- ( r = R -> ( 1r ` r ) = ( 1r ` R ) ) |
|
4 | 3 1 | eqtr4di | |- ( r = R -> ( 1r ` r ) = .1. ) |
5 | fveq2 | |- ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) |
|
6 | 5 2 | eqtr4di | |- ( r = R -> ( 0g ` r ) = .0. ) |
7 | 4 6 | neeq12d | |- ( r = R -> ( ( 1r ` r ) =/= ( 0g ` r ) <-> .1. =/= .0. ) ) |
8 | df-nzr | |- NzRing = { r e. Ring | ( 1r ` r ) =/= ( 0g ` r ) } |
|
9 | 7 8 | elrab2 | |- ( R e. NzRing <-> ( R e. Ring /\ .1. =/= .0. ) ) |