Metamath Proof Explorer


Theorem isnzr

Description: Property of a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypotheses isnzr.o
|- .1. = ( 1r ` R )
isnzr.z
|- .0. = ( 0g ` R )
Assertion isnzr
|- ( R e. NzRing <-> ( R e. Ring /\ .1. =/= .0. ) )

Proof

Step Hyp Ref Expression
1 isnzr.o
 |-  .1. = ( 1r ` R )
2 isnzr.z
 |-  .0. = ( 0g ` R )
3 fveq2
 |-  ( r = R -> ( 1r ` r ) = ( 1r ` R ) )
4 3 1 eqtr4di
 |-  ( r = R -> ( 1r ` r ) = .1. )
5 fveq2
 |-  ( r = R -> ( 0g ` r ) = ( 0g ` R ) )
6 5 2 eqtr4di
 |-  ( r = R -> ( 0g ` r ) = .0. )
7 4 6 neeq12d
 |-  ( r = R -> ( ( 1r ` r ) =/= ( 0g ` r ) <-> .1. =/= .0. ) )
8 df-nzr
 |-  NzRing = { r e. Ring | ( 1r ` r ) =/= ( 0g ` r ) }
9 7 8 elrab2
 |-  ( R e. NzRing <-> ( R e. Ring /\ .1. =/= .0. ) )