Description: One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isnzr.o | |- .1. = ( 1r ` R ) |
|
| isnzr.z | |- .0. = ( 0g ` R ) |
||
| Assertion | nzrnz | |- ( R e. NzRing -> .1. =/= .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnzr.o | |- .1. = ( 1r ` R ) |
|
| 2 | isnzr.z | |- .0. = ( 0g ` R ) |
|
| 3 | 1 2 | isnzr | |- ( R e. NzRing <-> ( R e. Ring /\ .1. =/= .0. ) ) |
| 4 | 3 | simprbi | |- ( R e. NzRing -> .1. =/= .0. ) |