Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015) (Proof shortened by SN, 23-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | nzrring | |- ( R e. NzRing -> R e. Ring ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nzr | |- NzRing = { r e. Ring | ( 1r ` r ) =/= ( 0g ` r ) } |
|
2 | 1 | ssrab3 | |- NzRing C_ Ring |
3 | 2 | sseli | |- ( R e. NzRing -> R e. Ring ) |