Metamath Proof Explorer


Theorem ssrab3

Description: Subclass relation for a restricted class abstraction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypothesis ssrab3.1
|- B = { x e. A | ph }
Assertion ssrab3
|- B C_ A

Proof

Step Hyp Ref Expression
1 ssrab3.1
 |-  B = { x e. A | ph }
2 ssrab2
 |-  { x e. A | ph } C_ A
3 1 2 eqsstri
 |-  B C_ A