Metamath Proof Explorer


Definition df-nzr

Description: A nonzero or nontrivial ring is a ring with at least two values, or equivalently where 1 and 0 are different. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Assertion df-nzr
|- NzRing = { r e. Ring | ( 1r ` r ) =/= ( 0g ` r ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnzr
 |-  NzRing
1 vr
 |-  r
2 crg
 |-  Ring
3 cur
 |-  1r
4 1 cv
 |-  r
5 4 3 cfv
 |-  ( 1r ` r )
6 c0g
 |-  0g
7 4 6 cfv
 |-  ( 0g ` r )
8 5 7 wne
 |-  ( 1r ` r ) =/= ( 0g ` r )
9 8 1 2 crab
 |-  { r e. Ring | ( 1r ` r ) =/= ( 0g ` r ) }
10 0 9 wceq
 |-  NzRing = { r e. Ring | ( 1r ` r ) =/= ( 0g ` r ) }