Metamath Proof Explorer


Definition df-nzr

Description: A nonzero or nontrivial ring is a ring with at least two values, or equivalently where 1 and 0 are different. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Assertion df-nzr NzRing = { 𝑟 ∈ Ring ∣ ( 1r𝑟 ) ≠ ( 0g𝑟 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnzr NzRing
1 vr 𝑟
2 crg Ring
3 cur 1r
4 1 cv 𝑟
5 4 3 cfv ( 1r𝑟 )
6 c0g 0g
7 4 6 cfv ( 0g𝑟 )
8 5 7 wne ( 1r𝑟 ) ≠ ( 0g𝑟 )
9 8 1 2 crab { 𝑟 ∈ Ring ∣ ( 1r𝑟 ) ≠ ( 0g𝑟 ) }
10 0 9 wceq NzRing = { 𝑟 ∈ Ring ∣ ( 1r𝑟 ) ≠ ( 0g𝑟 ) }