Database
BASIC ALGEBRAIC STRUCTURES
Ideals
Nonzero rings and zero rings
df-nzr
Metamath Proof Explorer
Description: A nonzero or nontrivial ring is a ring with at least two values, or
equivalently where 1 and 0 are different. (Contributed by Stefan O'Rear , 24-Feb-2015)
Ref
Expression
Assertion
df-nzr
⊢ NzRing = { 𝑟 ∈ Ring ∣ ( 1r ‘ 𝑟 ) ≠ ( 0g ‘ 𝑟 ) }
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cnzr
⊢ NzRing
1
vr
⊢ 𝑟
2
crg
⊢ Ring
3
cur
⊢ 1r
4
1
cv
⊢ 𝑟
5
4 3
cfv
⊢ ( 1r ‘ 𝑟 )
6
c0g
⊢ 0g
7
4 6
cfv
⊢ ( 0g ‘ 𝑟 )
8
5 7
wne
⊢ ( 1r ‘ 𝑟 ) ≠ ( 0g ‘ 𝑟 )
9
8 1 2
crab
⊢ { 𝑟 ∈ Ring ∣ ( 1r ‘ 𝑟 ) ≠ ( 0g ‘ 𝑟 ) }
10
0 9
wceq
⊢ NzRing = { 𝑟 ∈ Ring ∣ ( 1r ‘ 𝑟 ) ≠ ( 0g ‘ 𝑟 ) }