Metamath Proof Explorer


Theorem nzrringOLD

Description: Obsolete version of nzrring as of 23-Feb-2025. (Contributed by Stefan O'Rear, 24-Feb-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nzrringOLD
|- ( R e. NzRing -> R e. Ring )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( 1r ` R ) = ( 1r ` R )
2 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
3 1 2 isnzr
 |-  ( R e. NzRing <-> ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) )
4 3 simplbi
 |-  ( R e. NzRing -> R e. Ring )