Metamath Proof Explorer


Theorem linds1

Description: An independent set of vectors is a set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypothesis islinds.b
|- B = ( Base ` W )
Assertion linds1
|- ( X e. ( LIndS ` W ) -> X C_ B )

Proof

Step Hyp Ref Expression
1 islinds.b
 |-  B = ( Base ` W )
2 elfvdm
 |-  ( X e. ( LIndS ` W ) -> W e. dom LIndS )
3 1 islinds
 |-  ( W e. dom LIndS -> ( X e. ( LIndS ` W ) <-> ( X C_ B /\ ( _I |` X ) LIndF W ) ) )
4 2 3 syl
 |-  ( X e. ( LIndS ` W ) -> ( X e. ( LIndS ` W ) <-> ( X C_ B /\ ( _I |` X ) LIndF W ) ) )
5 4 ibi
 |-  ( X e. ( LIndS ` W ) -> ( X C_ B /\ ( _I |` X ) LIndF W ) )
6 5 simpld
 |-  ( X e. ( LIndS ` W ) -> X C_ B )