Description: An independent set of vectors is independent as a family. (Contributed by Stefan O'Rear, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | linds2 | |- ( X e. ( LIndS ` W ) -> ( _I |` X ) LIndF W ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm | |- ( X e. ( LIndS ` W ) -> W e. dom LIndS ) |
|
| 2 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 3 | 2 | islinds | |- ( W e. dom LIndS -> ( X e. ( LIndS ` W ) <-> ( X C_ ( Base ` W ) /\ ( _I |` X ) LIndF W ) ) ) |
| 4 | 1 3 | syl | |- ( X e. ( LIndS ` W ) -> ( X e. ( LIndS ` W ) <-> ( X C_ ( Base ` W ) /\ ( _I |` X ) LIndF W ) ) ) |
| 5 | 4 | ibi | |- ( X e. ( LIndS ` W ) -> ( X C_ ( Base ` W ) /\ ( _I |` X ) LIndF W ) ) |
| 6 | 5 | simprd | |- ( X e. ( LIndS ` W ) -> ( _I |` X ) LIndF W ) |