Metamath Proof Explorer


Theorem linds2

Description: An independent set of vectors is independent as a family. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Assertion linds2
|- ( X e. ( LIndS ` W ) -> ( _I |` X ) LIndF W )

Proof

Step Hyp Ref Expression
1 elfvdm
 |-  ( X e. ( LIndS ` W ) -> W e. dom LIndS )
2 eqid
 |-  ( Base ` W ) = ( Base ` W )
3 2 islinds
 |-  ( W e. dom LIndS -> ( X e. ( LIndS ` W ) <-> ( X C_ ( Base ` W ) /\ ( _I |` X ) LIndF W ) ) )
4 1 3 syl
 |-  ( X e. ( LIndS ` W ) -> ( X e. ( LIndS ` W ) <-> ( X C_ ( Base ` W ) /\ ( _I |` X ) LIndF W ) ) )
5 4 ibi
 |-  ( X e. ( LIndS ` W ) -> ( X C_ ( Base ` W ) /\ ( _I |` X ) LIndF W ) )
6 5 simprd
 |-  ( X e. ( LIndS ` W ) -> ( _I |` X ) LIndF W )