Step |
Hyp |
Ref |
Expression |
1 |
|
islindf.b |
|- B = ( Base ` W ) |
2 |
|
islindf.v |
|- .x. = ( .s ` W ) |
3 |
|
islindf.k |
|- K = ( LSpan ` W ) |
4 |
|
islindf.s |
|- S = ( Scalar ` W ) |
5 |
|
islindf.n |
|- N = ( Base ` S ) |
6 |
|
islindf.z |
|- .0. = ( 0g ` S ) |
7 |
|
feq1 |
|- ( f = F -> ( f : dom f --> ( Base ` w ) <-> F : dom f --> ( Base ` w ) ) ) |
8 |
7
|
adantr |
|- ( ( f = F /\ w = W ) -> ( f : dom f --> ( Base ` w ) <-> F : dom f --> ( Base ` w ) ) ) |
9 |
|
dmeq |
|- ( f = F -> dom f = dom F ) |
10 |
9
|
adantr |
|- ( ( f = F /\ w = W ) -> dom f = dom F ) |
11 |
|
fveq2 |
|- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
12 |
11 1
|
eqtr4di |
|- ( w = W -> ( Base ` w ) = B ) |
13 |
12
|
adantl |
|- ( ( f = F /\ w = W ) -> ( Base ` w ) = B ) |
14 |
10 13
|
feq23d |
|- ( ( f = F /\ w = W ) -> ( F : dom f --> ( Base ` w ) <-> F : dom F --> B ) ) |
15 |
8 14
|
bitrd |
|- ( ( f = F /\ w = W ) -> ( f : dom f --> ( Base ` w ) <-> F : dom F --> B ) ) |
16 |
|
fvex |
|- ( Scalar ` w ) e. _V |
17 |
|
fveq2 |
|- ( s = ( Scalar ` w ) -> ( Base ` s ) = ( Base ` ( Scalar ` w ) ) ) |
18 |
|
fveq2 |
|- ( s = ( Scalar ` w ) -> ( 0g ` s ) = ( 0g ` ( Scalar ` w ) ) ) |
19 |
18
|
sneqd |
|- ( s = ( Scalar ` w ) -> { ( 0g ` s ) } = { ( 0g ` ( Scalar ` w ) ) } ) |
20 |
17 19
|
difeq12d |
|- ( s = ( Scalar ` w ) -> ( ( Base ` s ) \ { ( 0g ` s ) } ) = ( ( Base ` ( Scalar ` w ) ) \ { ( 0g ` ( Scalar ` w ) ) } ) ) |
21 |
20
|
raleqdv |
|- ( s = ( Scalar ` w ) -> ( A. k e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) <-> A. k e. ( ( Base ` ( Scalar ` w ) ) \ { ( 0g ` ( Scalar ` w ) ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) ) ) |
22 |
21
|
ralbidv |
|- ( s = ( Scalar ` w ) -> ( A. x e. dom f A. k e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) <-> A. x e. dom f A. k e. ( ( Base ` ( Scalar ` w ) ) \ { ( 0g ` ( Scalar ` w ) ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) ) ) |
23 |
16 22
|
sbcie |
|- ( [. ( Scalar ` w ) / s ]. A. x e. dom f A. k e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) <-> A. x e. dom f A. k e. ( ( Base ` ( Scalar ` w ) ) \ { ( 0g ` ( Scalar ` w ) ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) ) |
24 |
|
fveq2 |
|- ( w = W -> ( Scalar ` w ) = ( Scalar ` W ) ) |
25 |
24 4
|
eqtr4di |
|- ( w = W -> ( Scalar ` w ) = S ) |
26 |
25
|
fveq2d |
|- ( w = W -> ( Base ` ( Scalar ` w ) ) = ( Base ` S ) ) |
27 |
26 5
|
eqtr4di |
|- ( w = W -> ( Base ` ( Scalar ` w ) ) = N ) |
28 |
25
|
fveq2d |
|- ( w = W -> ( 0g ` ( Scalar ` w ) ) = ( 0g ` S ) ) |
29 |
28 6
|
eqtr4di |
|- ( w = W -> ( 0g ` ( Scalar ` w ) ) = .0. ) |
30 |
29
|
sneqd |
|- ( w = W -> { ( 0g ` ( Scalar ` w ) ) } = { .0. } ) |
31 |
27 30
|
difeq12d |
|- ( w = W -> ( ( Base ` ( Scalar ` w ) ) \ { ( 0g ` ( Scalar ` w ) ) } ) = ( N \ { .0. } ) ) |
32 |
31
|
adantl |
|- ( ( f = F /\ w = W ) -> ( ( Base ` ( Scalar ` w ) ) \ { ( 0g ` ( Scalar ` w ) ) } ) = ( N \ { .0. } ) ) |
33 |
|
fveq2 |
|- ( w = W -> ( .s ` w ) = ( .s ` W ) ) |
34 |
33 2
|
eqtr4di |
|- ( w = W -> ( .s ` w ) = .x. ) |
35 |
34
|
adantl |
|- ( ( f = F /\ w = W ) -> ( .s ` w ) = .x. ) |
36 |
|
eqidd |
|- ( ( f = F /\ w = W ) -> k = k ) |
37 |
|
fveq1 |
|- ( f = F -> ( f ` x ) = ( F ` x ) ) |
38 |
37
|
adantr |
|- ( ( f = F /\ w = W ) -> ( f ` x ) = ( F ` x ) ) |
39 |
35 36 38
|
oveq123d |
|- ( ( f = F /\ w = W ) -> ( k ( .s ` w ) ( f ` x ) ) = ( k .x. ( F ` x ) ) ) |
40 |
|
fveq2 |
|- ( w = W -> ( LSpan ` w ) = ( LSpan ` W ) ) |
41 |
40 3
|
eqtr4di |
|- ( w = W -> ( LSpan ` w ) = K ) |
42 |
41
|
adantl |
|- ( ( f = F /\ w = W ) -> ( LSpan ` w ) = K ) |
43 |
|
imaeq1 |
|- ( f = F -> ( f " ( dom f \ { x } ) ) = ( F " ( dom f \ { x } ) ) ) |
44 |
9
|
difeq1d |
|- ( f = F -> ( dom f \ { x } ) = ( dom F \ { x } ) ) |
45 |
44
|
imaeq2d |
|- ( f = F -> ( F " ( dom f \ { x } ) ) = ( F " ( dom F \ { x } ) ) ) |
46 |
43 45
|
eqtrd |
|- ( f = F -> ( f " ( dom f \ { x } ) ) = ( F " ( dom F \ { x } ) ) ) |
47 |
46
|
adantr |
|- ( ( f = F /\ w = W ) -> ( f " ( dom f \ { x } ) ) = ( F " ( dom F \ { x } ) ) ) |
48 |
42 47
|
fveq12d |
|- ( ( f = F /\ w = W ) -> ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) = ( K ` ( F " ( dom F \ { x } ) ) ) ) |
49 |
39 48
|
eleq12d |
|- ( ( f = F /\ w = W ) -> ( ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) <-> ( k .x. ( F ` x ) ) e. ( K ` ( F " ( dom F \ { x } ) ) ) ) ) |
50 |
49
|
notbid |
|- ( ( f = F /\ w = W ) -> ( -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) <-> -. ( k .x. ( F ` x ) ) e. ( K ` ( F " ( dom F \ { x } ) ) ) ) ) |
51 |
32 50
|
raleqbidv |
|- ( ( f = F /\ w = W ) -> ( A. k e. ( ( Base ` ( Scalar ` w ) ) \ { ( 0g ` ( Scalar ` w ) ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) <-> A. k e. ( N \ { .0. } ) -. ( k .x. ( F ` x ) ) e. ( K ` ( F " ( dom F \ { x } ) ) ) ) ) |
52 |
10 51
|
raleqbidv |
|- ( ( f = F /\ w = W ) -> ( A. x e. dom f A. k e. ( ( Base ` ( Scalar ` w ) ) \ { ( 0g ` ( Scalar ` w ) ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) <-> A. x e. dom F A. k e. ( N \ { .0. } ) -. ( k .x. ( F ` x ) ) e. ( K ` ( F " ( dom F \ { x } ) ) ) ) ) |
53 |
23 52
|
syl5bb |
|- ( ( f = F /\ w = W ) -> ( [. ( Scalar ` w ) / s ]. A. x e. dom f A. k e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) <-> A. x e. dom F A. k e. ( N \ { .0. } ) -. ( k .x. ( F ` x ) ) e. ( K ` ( F " ( dom F \ { x } ) ) ) ) ) |
54 |
15 53
|
anbi12d |
|- ( ( f = F /\ w = W ) -> ( ( f : dom f --> ( Base ` w ) /\ [. ( Scalar ` w ) / s ]. A. x e. dom f A. k e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) ) <-> ( F : dom F --> B /\ A. x e. dom F A. k e. ( N \ { .0. } ) -. ( k .x. ( F ` x ) ) e. ( K ` ( F " ( dom F \ { x } ) ) ) ) ) ) |
55 |
|
df-lindf |
|- LIndF = { <. f , w >. | ( f : dom f --> ( Base ` w ) /\ [. ( Scalar ` w ) / s ]. A. x e. dom f A. k e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) ) } |
56 |
54 55
|
brabga |
|- ( ( F e. X /\ W e. Y ) -> ( F LIndF W <-> ( F : dom F --> B /\ A. x e. dom F A. k e. ( N \ { .0. } ) -. ( k .x. ( F ` x ) ) e. ( K ` ( F " ( dom F \ { x } ) ) ) ) ) ) |
57 |
56
|
ancoms |
|- ( ( W e. Y /\ F e. X ) -> ( F LIndF W <-> ( F : dom F --> B /\ A. x e. dom F A. k e. ( N \ { .0. } ) -. ( k .x. ( F ` x ) ) e. ( K ` ( F " ( dom F \ { x } ) ) ) ) ) ) |