Metamath Proof Explorer


Theorem islindf

Description: Property of an independent family of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypotheses islindf.b B = Base W
islindf.v · ˙ = W
islindf.k K = LSpan W
islindf.s S = Scalar W
islindf.n N = Base S
islindf.z 0 ˙ = 0 S
Assertion islindf W Y F X F LIndF W F : dom F B x dom F k N 0 ˙ ¬ k · ˙ F x K F dom F x

Proof

Step Hyp Ref Expression
1 islindf.b B = Base W
2 islindf.v · ˙ = W
3 islindf.k K = LSpan W
4 islindf.s S = Scalar W
5 islindf.n N = Base S
6 islindf.z 0 ˙ = 0 S
7 feq1 f = F f : dom f Base w F : dom f Base w
8 7 adantr f = F w = W f : dom f Base w F : dom f Base w
9 dmeq f = F dom f = dom F
10 9 adantr f = F w = W dom f = dom F
11 fveq2 w = W Base w = Base W
12 11 1 eqtr4di w = W Base w = B
13 12 adantl f = F w = W Base w = B
14 10 13 feq23d f = F w = W F : dom f Base w F : dom F B
15 8 14 bitrd f = F w = W f : dom f Base w F : dom F B
16 fvex Scalar w V
17 fveq2 s = Scalar w Base s = Base Scalar w
18 fveq2 s = Scalar w 0 s = 0 Scalar w
19 18 sneqd s = Scalar w 0 s = 0 Scalar w
20 17 19 difeq12d s = Scalar w Base s 0 s = Base Scalar w 0 Scalar w
21 20 raleqdv s = Scalar w k Base s 0 s ¬ k w f x LSpan w f dom f x k Base Scalar w 0 Scalar w ¬ k w f x LSpan w f dom f x
22 21 ralbidv s = Scalar w x dom f k Base s 0 s ¬ k w f x LSpan w f dom f x x dom f k Base Scalar w 0 Scalar w ¬ k w f x LSpan w f dom f x
23 16 22 sbcie [˙ Scalar w / s]˙ x dom f k Base s 0 s ¬ k w f x LSpan w f dom f x x dom f k Base Scalar w 0 Scalar w ¬ k w f x LSpan w f dom f x
24 fveq2 w = W Scalar w = Scalar W
25 24 4 eqtr4di w = W Scalar w = S
26 25 fveq2d w = W Base Scalar w = Base S
27 26 5 eqtr4di w = W Base Scalar w = N
28 25 fveq2d w = W 0 Scalar w = 0 S
29 28 6 eqtr4di w = W 0 Scalar w = 0 ˙
30 29 sneqd w = W 0 Scalar w = 0 ˙
31 27 30 difeq12d w = W Base Scalar w 0 Scalar w = N 0 ˙
32 31 adantl f = F w = W Base Scalar w 0 Scalar w = N 0 ˙
33 fveq2 w = W w = W
34 33 2 eqtr4di w = W w = · ˙
35 34 adantl f = F w = W w = · ˙
36 eqidd f = F w = W k = k
37 fveq1 f = F f x = F x
38 37 adantr f = F w = W f x = F x
39 35 36 38 oveq123d f = F w = W k w f x = k · ˙ F x
40 fveq2 w = W LSpan w = LSpan W
41 40 3 eqtr4di w = W LSpan w = K
42 41 adantl f = F w = W LSpan w = K
43 imaeq1 f = F f dom f x = F dom f x
44 9 difeq1d f = F dom f x = dom F x
45 44 imaeq2d f = F F dom f x = F dom F x
46 43 45 eqtrd f = F f dom f x = F dom F x
47 46 adantr f = F w = W f dom f x = F dom F x
48 42 47 fveq12d f = F w = W LSpan w f dom f x = K F dom F x
49 39 48 eleq12d f = F w = W k w f x LSpan w f dom f x k · ˙ F x K F dom F x
50 49 notbid f = F w = W ¬ k w f x LSpan w f dom f x ¬ k · ˙ F x K F dom F x
51 32 50 raleqbidv f = F w = W k Base Scalar w 0 Scalar w ¬ k w f x LSpan w f dom f x k N 0 ˙ ¬ k · ˙ F x K F dom F x
52 10 51 raleqbidv f = F w = W x dom f k Base Scalar w 0 Scalar w ¬ k w f x LSpan w f dom f x x dom F k N 0 ˙ ¬ k · ˙ F x K F dom F x
53 23 52 syl5bb f = F w = W [˙ Scalar w / s]˙ x dom f k Base s 0 s ¬ k w f x LSpan w f dom f x x dom F k N 0 ˙ ¬ k · ˙ F x K F dom F x
54 15 53 anbi12d f = F w = W f : dom f Base w [˙ Scalar w / s]˙ x dom f k Base s 0 s ¬ k w f x LSpan w f dom f x F : dom F B x dom F k N 0 ˙ ¬ k · ˙ F x K F dom F x
55 df-lindf LIndF = f w | f : dom f Base w [˙ Scalar w / s]˙ x dom f k Base s 0 s ¬ k w f x LSpan w f dom f x
56 54 55 brabga F X W Y F LIndF W F : dom F B x dom F k N 0 ˙ ¬ k · ˙ F x K F dom F x
57 56 ancoms W Y F X F LIndF W F : dom F B x dom F k N 0 ˙ ¬ k · ˙ F x K F dom F x