Metamath Proof Explorer


Theorem islindf

Description: Property of an independent family of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypotheses islindf.b B=BaseW
islindf.v ·˙=W
islindf.k K=LSpanW
islindf.s S=ScalarW
islindf.n N=BaseS
islindf.z 0˙=0S
Assertion islindf WYFXFLIndFWF:domFBxdomFkN0˙¬k·˙FxKFdomFx

Proof

Step Hyp Ref Expression
1 islindf.b B=BaseW
2 islindf.v ·˙=W
3 islindf.k K=LSpanW
4 islindf.s S=ScalarW
5 islindf.n N=BaseS
6 islindf.z 0˙=0S
7 feq1 f=Ff:domfBasewF:domfBasew
8 7 adantr f=Fw=Wf:domfBasewF:domfBasew
9 dmeq f=Fdomf=domF
10 9 adantr f=Fw=Wdomf=domF
11 fveq2 w=WBasew=BaseW
12 11 1 eqtr4di w=WBasew=B
13 12 adantl f=Fw=WBasew=B
14 10 13 feq23d f=Fw=WF:domfBasewF:domFB
15 8 14 bitrd f=Fw=Wf:domfBasewF:domFB
16 fvex ScalarwV
17 fveq2 s=ScalarwBases=BaseScalarw
18 fveq2 s=Scalarw0s=0Scalarw
19 18 sneqd s=Scalarw0s=0Scalarw
20 17 19 difeq12d s=ScalarwBases0s=BaseScalarw0Scalarw
21 20 raleqdv s=ScalarwkBases0s¬kwfxLSpanwfdomfxkBaseScalarw0Scalarw¬kwfxLSpanwfdomfx
22 21 ralbidv s=ScalarwxdomfkBases0s¬kwfxLSpanwfdomfxxdomfkBaseScalarw0Scalarw¬kwfxLSpanwfdomfx
23 16 22 sbcie [˙Scalarw/s]˙xdomfkBases0s¬kwfxLSpanwfdomfxxdomfkBaseScalarw0Scalarw¬kwfxLSpanwfdomfx
24 fveq2 w=WScalarw=ScalarW
25 24 4 eqtr4di w=WScalarw=S
26 25 fveq2d w=WBaseScalarw=BaseS
27 26 5 eqtr4di w=WBaseScalarw=N
28 25 fveq2d w=W0Scalarw=0S
29 28 6 eqtr4di w=W0Scalarw=0˙
30 29 sneqd w=W0Scalarw=0˙
31 27 30 difeq12d w=WBaseScalarw0Scalarw=N0˙
32 31 adantl f=Fw=WBaseScalarw0Scalarw=N0˙
33 fveq2 w=Ww=W
34 33 2 eqtr4di w=Ww=·˙
35 34 adantl f=Fw=Ww=·˙
36 eqidd f=Fw=Wk=k
37 fveq1 f=Ffx=Fx
38 37 adantr f=Fw=Wfx=Fx
39 35 36 38 oveq123d f=Fw=Wkwfx=k·˙Fx
40 fveq2 w=WLSpanw=LSpanW
41 40 3 eqtr4di w=WLSpanw=K
42 41 adantl f=Fw=WLSpanw=K
43 imaeq1 f=Ffdomfx=Fdomfx
44 9 difeq1d f=Fdomfx=domFx
45 44 imaeq2d f=FFdomfx=FdomFx
46 43 45 eqtrd f=Ffdomfx=FdomFx
47 46 adantr f=Fw=Wfdomfx=FdomFx
48 42 47 fveq12d f=Fw=WLSpanwfdomfx=KFdomFx
49 39 48 eleq12d f=Fw=WkwfxLSpanwfdomfxk·˙FxKFdomFx
50 49 notbid f=Fw=W¬kwfxLSpanwfdomfx¬k·˙FxKFdomFx
51 32 50 raleqbidv f=Fw=WkBaseScalarw0Scalarw¬kwfxLSpanwfdomfxkN0˙¬k·˙FxKFdomFx
52 10 51 raleqbidv f=Fw=WxdomfkBaseScalarw0Scalarw¬kwfxLSpanwfdomfxxdomFkN0˙¬k·˙FxKFdomFx
53 23 52 bitrid f=Fw=W[˙Scalarw/s]˙xdomfkBases0s¬kwfxLSpanwfdomfxxdomFkN0˙¬k·˙FxKFdomFx
54 15 53 anbi12d f=Fw=Wf:domfBasew[˙Scalarw/s]˙xdomfkBases0s¬kwfxLSpanwfdomfxF:domFBxdomFkN0˙¬k·˙FxKFdomFx
55 df-lindf LIndF=fw|f:domfBasew[˙Scalarw/s]˙xdomfkBases0s¬kwfxLSpanwfdomfx
56 54 55 brabga FXWYFLIndFWF:domFBxdomFkN0˙¬k·˙FxKFdomFx
57 56 ancoms WYFXFLIndFWF:domFBxdomFkN0˙¬k·˙FxKFdomFx