Metamath Proof Explorer


Theorem difeq12d

Description: Equality deduction for class difference. (Contributed by FL, 29-May-2014)

Ref Expression
Hypotheses difeq12d.1 φA=B
difeq12d.2 φC=D
Assertion difeq12d φAC=BD

Proof

Step Hyp Ref Expression
1 difeq12d.1 φA=B
2 difeq12d.2 φC=D
3 1 difeq1d φAC=BC
4 2 difeq2d φBC=BD
5 3 4 eqtrd φAC=BD