Step |
Hyp |
Ref |
Expression |
1 |
|
islindf.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
islindf.v |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
3 |
|
islindf.k |
⊢ 𝐾 = ( LSpan ‘ 𝑊 ) |
4 |
|
islindf.s |
⊢ 𝑆 = ( Scalar ‘ 𝑊 ) |
5 |
|
islindf.n |
⊢ 𝑁 = ( Base ‘ 𝑆 ) |
6 |
|
islindf.z |
⊢ 0 = ( 0g ‘ 𝑆 ) |
7 |
|
feq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 : dom 𝑓 ⟶ ( Base ‘ 𝑤 ) ↔ 𝐹 : dom 𝑓 ⟶ ( Base ‘ 𝑤 ) ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝑊 ) → ( 𝑓 : dom 𝑓 ⟶ ( Base ‘ 𝑤 ) ↔ 𝐹 : dom 𝑓 ⟶ ( Base ‘ 𝑤 ) ) ) |
9 |
|
dmeq |
⊢ ( 𝑓 = 𝐹 → dom 𝑓 = dom 𝐹 ) |
10 |
9
|
adantr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝑊 ) → dom 𝑓 = dom 𝐹 ) |
11 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
12 |
11 1
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝐵 ) |
13 |
12
|
adantl |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝑊 ) → ( Base ‘ 𝑤 ) = 𝐵 ) |
14 |
10 13
|
feq23d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝑊 ) → ( 𝐹 : dom 𝑓 ⟶ ( Base ‘ 𝑤 ) ↔ 𝐹 : dom 𝐹 ⟶ 𝐵 ) ) |
15 |
8 14
|
bitrd |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝑊 ) → ( 𝑓 : dom 𝑓 ⟶ ( Base ‘ 𝑤 ) ↔ 𝐹 : dom 𝐹 ⟶ 𝐵 ) ) |
16 |
|
fvex |
⊢ ( Scalar ‘ 𝑤 ) ∈ V |
17 |
|
fveq2 |
⊢ ( 𝑠 = ( Scalar ‘ 𝑤 ) → ( Base ‘ 𝑠 ) = ( Base ‘ ( Scalar ‘ 𝑤 ) ) ) |
18 |
|
fveq2 |
⊢ ( 𝑠 = ( Scalar ‘ 𝑤 ) → ( 0g ‘ 𝑠 ) = ( 0g ‘ ( Scalar ‘ 𝑤 ) ) ) |
19 |
18
|
sneqd |
⊢ ( 𝑠 = ( Scalar ‘ 𝑤 ) → { ( 0g ‘ 𝑠 ) } = { ( 0g ‘ ( Scalar ‘ 𝑤 ) ) } ) |
20 |
17 19
|
difeq12d |
⊢ ( 𝑠 = ( Scalar ‘ 𝑤 ) → ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) = ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑤 ) ) } ) ) |
21 |
20
|
raleqdv |
⊢ ( 𝑠 = ( Scalar ‘ 𝑤 ) → ( ∀ 𝑘 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑓 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) ) ↔ ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑤 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑓 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) ) ) ) |
22 |
21
|
ralbidv |
⊢ ( 𝑠 = ( Scalar ‘ 𝑤 ) → ( ∀ 𝑥 ∈ dom 𝑓 ∀ 𝑘 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑓 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) ) ↔ ∀ 𝑥 ∈ dom 𝑓 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑤 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑓 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) ) ) ) |
23 |
16 22
|
sbcie |
⊢ ( [ ( Scalar ‘ 𝑤 ) / 𝑠 ] ∀ 𝑥 ∈ dom 𝑓 ∀ 𝑘 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑓 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) ) ↔ ∀ 𝑥 ∈ dom 𝑓 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑤 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑓 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) ) ) |
24 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) ) |
25 |
24 4
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = 𝑆 ) |
26 |
25
|
fveq2d |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ ( Scalar ‘ 𝑤 ) ) = ( Base ‘ 𝑆 ) ) |
27 |
26 5
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ ( Scalar ‘ 𝑤 ) ) = 𝑁 ) |
28 |
25
|
fveq2d |
⊢ ( 𝑤 = 𝑊 → ( 0g ‘ ( Scalar ‘ 𝑤 ) ) = ( 0g ‘ 𝑆 ) ) |
29 |
28 6
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( 0g ‘ ( Scalar ‘ 𝑤 ) ) = 0 ) |
30 |
29
|
sneqd |
⊢ ( 𝑤 = 𝑊 → { ( 0g ‘ ( Scalar ‘ 𝑤 ) ) } = { 0 } ) |
31 |
27 30
|
difeq12d |
⊢ ( 𝑤 = 𝑊 → ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑤 ) ) } ) = ( 𝑁 ∖ { 0 } ) ) |
32 |
31
|
adantl |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝑊 ) → ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑤 ) ) } ) = ( 𝑁 ∖ { 0 } ) ) |
33 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ·𝑠 ‘ 𝑤 ) = ( ·𝑠 ‘ 𝑊 ) ) |
34 |
33 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ·𝑠 ‘ 𝑤 ) = · ) |
35 |
34
|
adantl |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝑊 ) → ( ·𝑠 ‘ 𝑤 ) = · ) |
36 |
|
eqidd |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝑊 ) → 𝑘 = 𝑘 ) |
37 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝑊 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
39 |
35 36 38
|
oveq123d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝑊 ) → ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑓 ‘ 𝑥 ) ) = ( 𝑘 · ( 𝐹 ‘ 𝑥 ) ) ) |
40 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( LSpan ‘ 𝑤 ) = ( LSpan ‘ 𝑊 ) ) |
41 |
40 3
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( LSpan ‘ 𝑤 ) = 𝐾 ) |
42 |
41
|
adantl |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝑊 ) → ( LSpan ‘ 𝑤 ) = 𝐾 ) |
43 |
|
imaeq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) = ( 𝐹 “ ( dom 𝑓 ∖ { 𝑥 } ) ) ) |
44 |
9
|
difeq1d |
⊢ ( 𝑓 = 𝐹 → ( dom 𝑓 ∖ { 𝑥 } ) = ( dom 𝐹 ∖ { 𝑥 } ) ) |
45 |
44
|
imaeq2d |
⊢ ( 𝑓 = 𝐹 → ( 𝐹 “ ( dom 𝑓 ∖ { 𝑥 } ) ) = ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) |
46 |
43 45
|
eqtrd |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) = ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) |
47 |
46
|
adantr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝑊 ) → ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) = ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) |
48 |
42 47
|
fveq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝑊 ) → ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) ) = ( 𝐾 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ) |
49 |
39 48
|
eleq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝑊 ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑓 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) ) ↔ ( 𝑘 · ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐾 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ) ) |
50 |
49
|
notbid |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝑊 ) → ( ¬ ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑓 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) ) ↔ ¬ ( 𝑘 · ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐾 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ) ) |
51 |
32 50
|
raleqbidv |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝑊 ) → ( ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑤 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑓 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) ) ↔ ∀ 𝑘 ∈ ( 𝑁 ∖ { 0 } ) ¬ ( 𝑘 · ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐾 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ) ) |
52 |
10 51
|
raleqbidv |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝑊 ) → ( ∀ 𝑥 ∈ dom 𝑓 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑤 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑓 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) ) ↔ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑘 ∈ ( 𝑁 ∖ { 0 } ) ¬ ( 𝑘 · ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐾 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ) ) |
53 |
23 52
|
syl5bb |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝑊 ) → ( [ ( Scalar ‘ 𝑤 ) / 𝑠 ] ∀ 𝑥 ∈ dom 𝑓 ∀ 𝑘 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑓 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) ) ↔ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑘 ∈ ( 𝑁 ∖ { 0 } ) ¬ ( 𝑘 · ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐾 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ) ) |
54 |
15 53
|
anbi12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝑊 ) → ( ( 𝑓 : dom 𝑓 ⟶ ( Base ‘ 𝑤 ) ∧ [ ( Scalar ‘ 𝑤 ) / 𝑠 ] ∀ 𝑥 ∈ dom 𝑓 ∀ 𝑘 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑓 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) ) ) ↔ ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑘 ∈ ( 𝑁 ∖ { 0 } ) ¬ ( 𝑘 · ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐾 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ) ) ) |
55 |
|
df-lindf |
⊢ LIndF = { 〈 𝑓 , 𝑤 〉 ∣ ( 𝑓 : dom 𝑓 ⟶ ( Base ‘ 𝑤 ) ∧ [ ( Scalar ‘ 𝑤 ) / 𝑠 ] ∀ 𝑥 ∈ dom 𝑓 ∀ 𝑘 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑓 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) ) ) } |
56 |
54 55
|
brabga |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( 𝐹 LIndF 𝑊 ↔ ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑘 ∈ ( 𝑁 ∖ { 0 } ) ¬ ( 𝑘 · ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐾 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ) ) ) |
57 |
56
|
ancoms |
⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐹 ∈ 𝑋 ) → ( 𝐹 LIndF 𝑊 ↔ ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑘 ∈ ( 𝑁 ∖ { 0 } ) ¬ ( 𝑘 · ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐾 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ) ) ) |