Metamath Proof Explorer


Definition df-lindf

Description: An independent family is a family of vectors, no nonzero multiple of which can be expressed as a linear combination of other elements of the family. This is almost, but not quite, the same as a function into an independent set.

This is a defined concept because it matters in many cases whether independence is taken at a set or family level. For instance, a number is transcedental iff its nonzero powers are linearly independent. Is 1 transcedental? It has only one nonzero power.

We can almost define family independence as a family of unequal elements with independent range, as islindf3 , but taking that as primitive would lead to unpleasant corner case behavior with the zero ring.

This is equivalent to the common definition of having no nontrivial representations of zero ( islindf4 ) and only one representation for each element of the range ( islindf5 ). (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Assertion df-lindf LIndF = { ⟨ 𝑓 , 𝑤 ⟩ ∣ ( 𝑓 : dom 𝑓 ⟶ ( Base ‘ 𝑤 ) ∧ [ ( Scalar ‘ 𝑤 ) / 𝑠 ]𝑥 ∈ dom 𝑓𝑘 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g𝑠 ) } ) ¬ ( 𝑘 ( ·𝑠𝑤 ) ( 𝑓𝑥 ) ) ∈ ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 clindf LIndF
1 vf 𝑓
2 vw 𝑤
3 1 cv 𝑓
4 3 cdm dom 𝑓
5 cbs Base
6 2 cv 𝑤
7 6 5 cfv ( Base ‘ 𝑤 )
8 4 7 3 wf 𝑓 : dom 𝑓 ⟶ ( Base ‘ 𝑤 )
9 csca Scalar
10 6 9 cfv ( Scalar ‘ 𝑤 )
11 vs 𝑠
12 vx 𝑥
13 vk 𝑘
14 11 cv 𝑠
15 14 5 cfv ( Base ‘ 𝑠 )
16 c0g 0g
17 14 16 cfv ( 0g𝑠 )
18 17 csn { ( 0g𝑠 ) }
19 15 18 cdif ( ( Base ‘ 𝑠 ) ∖ { ( 0g𝑠 ) } )
20 13 cv 𝑘
21 cvsca ·𝑠
22 6 21 cfv ( ·𝑠𝑤 )
23 12 cv 𝑥
24 23 3 cfv ( 𝑓𝑥 )
25 20 24 22 co ( 𝑘 ( ·𝑠𝑤 ) ( 𝑓𝑥 ) )
26 clspn LSpan
27 6 26 cfv ( LSpan ‘ 𝑤 )
28 23 csn { 𝑥 }
29 4 28 cdif ( dom 𝑓 ∖ { 𝑥 } )
30 3 29 cima ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) )
31 30 27 cfv ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) )
32 25 31 wcel ( 𝑘 ( ·𝑠𝑤 ) ( 𝑓𝑥 ) ) ∈ ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) )
33 32 wn ¬ ( 𝑘 ( ·𝑠𝑤 ) ( 𝑓𝑥 ) ) ∈ ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) )
34 33 13 19 wral 𝑘 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g𝑠 ) } ) ¬ ( 𝑘 ( ·𝑠𝑤 ) ( 𝑓𝑥 ) ) ∈ ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) )
35 34 12 4 wral 𝑥 ∈ dom 𝑓𝑘 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g𝑠 ) } ) ¬ ( 𝑘 ( ·𝑠𝑤 ) ( 𝑓𝑥 ) ) ∈ ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) )
36 35 11 10 wsbc [ ( Scalar ‘ 𝑤 ) / 𝑠 ]𝑥 ∈ dom 𝑓𝑘 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g𝑠 ) } ) ¬ ( 𝑘 ( ·𝑠𝑤 ) ( 𝑓𝑥 ) ) ∈ ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) )
37 8 36 wa ( 𝑓 : dom 𝑓 ⟶ ( Base ‘ 𝑤 ) ∧ [ ( Scalar ‘ 𝑤 ) / 𝑠 ]𝑥 ∈ dom 𝑓𝑘 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g𝑠 ) } ) ¬ ( 𝑘 ( ·𝑠𝑤 ) ( 𝑓𝑥 ) ) ∈ ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) ) )
38 37 1 2 copab { ⟨ 𝑓 , 𝑤 ⟩ ∣ ( 𝑓 : dom 𝑓 ⟶ ( Base ‘ 𝑤 ) ∧ [ ( Scalar ‘ 𝑤 ) / 𝑠 ]𝑥 ∈ dom 𝑓𝑘 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g𝑠 ) } ) ¬ ( 𝑘 ( ·𝑠𝑤 ) ( 𝑓𝑥 ) ) ∈ ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) ) ) }
39 0 38 wceq LIndF = { ⟨ 𝑓 , 𝑤 ⟩ ∣ ( 𝑓 : dom 𝑓 ⟶ ( Base ‘ 𝑤 ) ∧ [ ( Scalar ‘ 𝑤 ) / 𝑠 ]𝑥 ∈ dom 𝑓𝑘 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g𝑠 ) } ) ¬ ( 𝑘 ( ·𝑠𝑤 ) ( 𝑓𝑥 ) ) ∈ ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) ) ) }