| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islindf4.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
| 2 |
|
islindf4.r |
⊢ 𝑅 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
islindf4.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 4 |
|
islindf4.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 5 |
|
islindf4.y |
⊢ 𝑌 = ( 0g ‘ 𝑅 ) |
| 6 |
|
islindf4.l |
⊢ 𝐿 = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) |
| 7 |
|
raldifsni |
⊢ ( ∀ 𝑙 ∈ ( ( Base ‘ 𝑅 ) ∖ { 𝑌 } ) ¬ ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) ) ↔ ∀ 𝑙 ∈ ( Base ‘ 𝑅 ) ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) ) → 𝑙 = 𝑌 ) ) |
| 8 |
|
simpll1 |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → 𝑊 ∈ LMod ) |
| 9 |
|
simprll |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → 𝑙 ∈ ( Base ‘ 𝑅 ) ) |
| 10 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝑗 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝐵 ) |
| 11 |
10
|
3ad2antl3 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝐵 ) |
| 12 |
11
|
adantr |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝐵 ) |
| 13 |
|
eqid |
⊢ ( invg ‘ 𝑊 ) = ( invg ‘ 𝑊 ) |
| 14 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 16 |
1 2 3 13 14 15
|
lmodvsinv |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝐵 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) = ( ( invg ‘ 𝑊 ) ‘ ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 17 |
8 9 12 16
|
syl3anc |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) = ( ( invg ‘ 𝑊 ) ‘ ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 18 |
17
|
eqeq1d |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) = ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ↔ ( ( invg ‘ 𝑊 ) ‘ ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ) = ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ) ) |
| 19 |
|
lmodgrp |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
| 20 |
8 19
|
syl |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → 𝑊 ∈ Grp ) |
| 21 |
1 2 3 15
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝐵 ) → ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ∈ 𝐵 ) |
| 22 |
8 9 12 21
|
syl3anc |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ∈ 𝐵 ) |
| 23 |
|
lmodcmn |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ CMnd ) |
| 24 |
8 23
|
syl |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → 𝑊 ∈ CMnd ) |
| 25 |
|
simpll2 |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → 𝐼 ∈ 𝑋 ) |
| 26 |
|
difexg |
⊢ ( 𝐼 ∈ 𝑋 → ( 𝐼 ∖ { 𝑗 } ) ∈ V ) |
| 27 |
25 26
|
syl |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( 𝐼 ∖ { 𝑗 } ) ∈ V ) |
| 28 |
|
simprlr |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) |
| 29 |
|
elmapi |
⊢ ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) → 𝑦 : ( 𝐼 ∖ { 𝑗 } ) ⟶ ( Base ‘ 𝑅 ) ) |
| 30 |
28 29
|
syl |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → 𝑦 : ( 𝐼 ∖ { 𝑗 } ) ⟶ ( Base ‘ 𝑅 ) ) |
| 31 |
|
simpll3 |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → 𝐹 : 𝐼 ⟶ 𝐵 ) |
| 32 |
|
difss |
⊢ ( 𝐼 ∖ { 𝑗 } ) ⊆ 𝐼 |
| 33 |
|
fssres |
⊢ ( ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ ( 𝐼 ∖ { 𝑗 } ) ⊆ 𝐼 ) → ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) : ( 𝐼 ∖ { 𝑗 } ) ⟶ 𝐵 ) |
| 34 |
31 32 33
|
sylancl |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) : ( 𝐼 ∖ { 𝑗 } ) ⟶ 𝐵 ) |
| 35 |
2 15 3 1 8 30 34 27
|
lcomf |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) : ( 𝐼 ∖ { 𝑗 } ) ⟶ 𝐵 ) |
| 36 |
|
simprr |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → 𝑦 finSupp 𝑌 ) |
| 37 |
2 15 3 1 8 30 34 27 4 5 36
|
lcomfsupp |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) finSupp 0 ) |
| 38 |
1 4 24 27 35 37
|
gsumcl |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ∈ 𝐵 ) |
| 39 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 40 |
1 39 4 13
|
grpinvid2 |
⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ∈ 𝐵 ∧ ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ∈ 𝐵 ) → ( ( ( invg ‘ 𝑊 ) ‘ ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ) = ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ↔ ( ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ( +g ‘ 𝑊 ) ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ) = 0 ) ) |
| 41 |
20 22 38 40
|
syl3anc |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( ( ( invg ‘ 𝑊 ) ‘ ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ) = ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ↔ ( ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ( +g ‘ 𝑊 ) ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ) = 0 ) ) |
| 42 |
|
simplr |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → 𝑗 ∈ 𝐼 ) |
| 43 |
|
fsnunf2 |
⊢ ( ( 𝑦 : ( 𝐼 ∖ { 𝑗 } ) ⟶ ( Base ‘ 𝑅 ) ∧ 𝑗 ∈ 𝐼 ∧ 𝑙 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 44 |
30 42 9 43
|
syl3anc |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 45 |
2 15 3 1 8 44 31 25
|
lcomf |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) : 𝐼 ⟶ 𝐵 ) |
| 46 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) → 𝑗 ∈ 𝐼 ) |
| 47 |
|
simpl |
⊢ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) → 𝑙 ∈ ( Base ‘ 𝑅 ) ) |
| 48 |
46 47
|
anim12i |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ) → ( 𝑗 ∈ 𝐼 ∧ 𝑙 ∈ ( Base ‘ 𝑅 ) ) ) |
| 49 |
|
elmapfun |
⊢ ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) → Fun 𝑦 ) |
| 50 |
|
fdm |
⊢ ( 𝑦 : ( 𝐼 ∖ { 𝑗 } ) ⟶ ( Base ‘ 𝑅 ) → dom 𝑦 = ( 𝐼 ∖ { 𝑗 } ) ) |
| 51 |
|
neldifsnd |
⊢ ( dom 𝑦 = ( 𝐼 ∖ { 𝑗 } ) → ¬ 𝑗 ∈ ( 𝐼 ∖ { 𝑗 } ) ) |
| 52 |
|
df-nel |
⊢ ( 𝑗 ∉ dom 𝑦 ↔ ¬ 𝑗 ∈ dom 𝑦 ) |
| 53 |
|
eleq2 |
⊢ ( dom 𝑦 = ( 𝐼 ∖ { 𝑗 } ) → ( 𝑗 ∈ dom 𝑦 ↔ 𝑗 ∈ ( 𝐼 ∖ { 𝑗 } ) ) ) |
| 54 |
53
|
notbid |
⊢ ( dom 𝑦 = ( 𝐼 ∖ { 𝑗 } ) → ( ¬ 𝑗 ∈ dom 𝑦 ↔ ¬ 𝑗 ∈ ( 𝐼 ∖ { 𝑗 } ) ) ) |
| 55 |
52 54
|
bitrid |
⊢ ( dom 𝑦 = ( 𝐼 ∖ { 𝑗 } ) → ( 𝑗 ∉ dom 𝑦 ↔ ¬ 𝑗 ∈ ( 𝐼 ∖ { 𝑗 } ) ) ) |
| 56 |
51 55
|
mpbird |
⊢ ( dom 𝑦 = ( 𝐼 ∖ { 𝑗 } ) → 𝑗 ∉ dom 𝑦 ) |
| 57 |
29 50 56
|
3syl |
⊢ ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) → 𝑗 ∉ dom 𝑦 ) |
| 58 |
49 57
|
jca |
⊢ ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) → ( Fun 𝑦 ∧ 𝑗 ∉ dom 𝑦 ) ) |
| 59 |
58
|
adantl |
⊢ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) → ( Fun 𝑦 ∧ 𝑗 ∉ dom 𝑦 ) ) |
| 60 |
59
|
adantl |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ) → ( Fun 𝑦 ∧ 𝑗 ∉ dom 𝑦 ) ) |
| 61 |
48 60
|
jca |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ) → ( ( 𝑗 ∈ 𝐼 ∧ 𝑙 ∈ ( Base ‘ 𝑅 ) ) ∧ ( Fun 𝑦 ∧ 𝑗 ∉ dom 𝑦 ) ) ) |
| 62 |
|
funsnfsupp |
⊢ ( ( ( 𝑗 ∈ 𝐼 ∧ 𝑙 ∈ ( Base ‘ 𝑅 ) ) ∧ ( Fun 𝑦 ∧ 𝑗 ∉ dom 𝑦 ) ) → ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) finSupp 𝑌 ↔ 𝑦 finSupp 𝑌 ) ) |
| 63 |
62
|
bicomd |
⊢ ( ( ( 𝑗 ∈ 𝐼 ∧ 𝑙 ∈ ( Base ‘ 𝑅 ) ) ∧ ( Fun 𝑦 ∧ 𝑗 ∉ dom 𝑦 ) ) → ( 𝑦 finSupp 𝑌 ↔ ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) finSupp 𝑌 ) ) |
| 64 |
61 63
|
syl |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ) → ( 𝑦 finSupp 𝑌 ↔ ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) finSupp 𝑌 ) ) |
| 65 |
64
|
biimpd |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ) → ( 𝑦 finSupp 𝑌 → ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) finSupp 𝑌 ) ) |
| 66 |
65
|
impr |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) finSupp 𝑌 ) |
| 67 |
2 15 3 1 8 44 31 25 4 5 66
|
lcomfsupp |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) finSupp 0 ) |
| 68 |
|
disjdifr |
⊢ ( ( 𝐼 ∖ { 𝑗 } ) ∩ { 𝑗 } ) = ∅ |
| 69 |
68
|
a1i |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( ( 𝐼 ∖ { 𝑗 } ) ∩ { 𝑗 } ) = ∅ ) |
| 70 |
|
difsnid |
⊢ ( 𝑗 ∈ 𝐼 → ( ( 𝐼 ∖ { 𝑗 } ) ∪ { 𝑗 } ) = 𝐼 ) |
| 71 |
70
|
eqcomd |
⊢ ( 𝑗 ∈ 𝐼 → 𝐼 = ( ( 𝐼 ∖ { 𝑗 } ) ∪ { 𝑗 } ) ) |
| 72 |
42 71
|
syl |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → 𝐼 = ( ( 𝐼 ∖ { 𝑗 } ) ∪ { 𝑗 } ) ) |
| 73 |
1 4 39 24 25 45 67 69 72
|
gsumsplit |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( 𝑊 Σg ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ) = ( ( 𝑊 Σg ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ( +g ‘ 𝑊 ) ( 𝑊 Σg ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ↾ { 𝑗 } ) ) ) ) |
| 74 |
|
vex |
⊢ 𝑦 ∈ V |
| 75 |
|
snex |
⊢ { 〈 𝑗 , 𝑙 〉 } ∈ V |
| 76 |
74 75
|
unex |
⊢ ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∈ V |
| 77 |
|
simpl3 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) → 𝐹 : 𝐼 ⟶ 𝐵 ) |
| 78 |
|
simpl2 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) → 𝐼 ∈ 𝑋 ) |
| 79 |
77 78
|
fexd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) → 𝐹 ∈ V ) |
| 80 |
79
|
adantr |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → 𝐹 ∈ V ) |
| 81 |
|
offres |
⊢ ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∈ V ∧ 𝐹 ∈ V ) → ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ↾ ( 𝐼 ∖ { 𝑗 } ) ) = ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ↾ ( 𝐼 ∖ { 𝑗 } ) ) ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) |
| 82 |
76 80 81
|
sylancr |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ↾ ( 𝐼 ∖ { 𝑗 } ) ) = ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ↾ ( 𝐼 ∖ { 𝑗 } ) ) ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) |
| 83 |
30
|
ffnd |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → 𝑦 Fn ( 𝐼 ∖ { 𝑗 } ) ) |
| 84 |
|
neldifsn |
⊢ ¬ 𝑗 ∈ ( 𝐼 ∖ { 𝑗 } ) |
| 85 |
|
fsnunres |
⊢ ( ( 𝑦 Fn ( 𝐼 ∖ { 𝑗 } ) ∧ ¬ 𝑗 ∈ ( 𝐼 ∖ { 𝑗 } ) ) → ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ↾ ( 𝐼 ∖ { 𝑗 } ) ) = 𝑦 ) |
| 86 |
83 84 85
|
sylancl |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ↾ ( 𝐼 ∖ { 𝑗 } ) ) = 𝑦 ) |
| 87 |
86
|
oveq1d |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ↾ ( 𝐼 ∖ { 𝑗 } ) ) ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) = ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) |
| 88 |
82 87
|
eqtrd |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ↾ ( 𝐼 ∖ { 𝑗 } ) ) = ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) |
| 89 |
88
|
oveq2d |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( 𝑊 Σg ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) = ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ) |
| 90 |
45
|
ffnd |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) Fn 𝐼 ) |
| 91 |
|
fnressn |
⊢ ( ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) Fn 𝐼 ∧ 𝑗 ∈ 𝐼 ) → ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ↾ { 𝑗 } ) = { 〈 𝑗 , ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ‘ 𝑗 ) 〉 } ) |
| 92 |
90 42 91
|
syl2anc |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ↾ { 𝑗 } ) = { 〈 𝑗 , ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ‘ 𝑗 ) 〉 } ) |
| 93 |
44
|
ffnd |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) Fn 𝐼 ) |
| 94 |
31
|
ffnd |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → 𝐹 Fn 𝐼 ) |
| 95 |
|
fnfvof |
⊢ ( ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) Fn 𝐼 ∧ 𝐹 Fn 𝐼 ) ∧ ( 𝐼 ∈ 𝑋 ∧ 𝑗 ∈ 𝐼 ) ) → ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ‘ 𝑗 ) = ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ‘ 𝑗 ) · ( 𝐹 ‘ 𝑗 ) ) ) |
| 96 |
93 94 25 42 95
|
syl22anc |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ‘ 𝑗 ) = ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ‘ 𝑗 ) · ( 𝐹 ‘ 𝑗 ) ) ) |
| 97 |
|
fndm |
⊢ ( 𝑦 Fn ( 𝐼 ∖ { 𝑗 } ) → dom 𝑦 = ( 𝐼 ∖ { 𝑗 } ) ) |
| 98 |
97
|
eleq2d |
⊢ ( 𝑦 Fn ( 𝐼 ∖ { 𝑗 } ) → ( 𝑗 ∈ dom 𝑦 ↔ 𝑗 ∈ ( 𝐼 ∖ { 𝑗 } ) ) ) |
| 99 |
84 98
|
mtbiri |
⊢ ( 𝑦 Fn ( 𝐼 ∖ { 𝑗 } ) → ¬ 𝑗 ∈ dom 𝑦 ) |
| 100 |
|
vex |
⊢ 𝑗 ∈ V |
| 101 |
|
vex |
⊢ 𝑙 ∈ V |
| 102 |
|
fsnunfv |
⊢ ( ( 𝑗 ∈ V ∧ 𝑙 ∈ V ∧ ¬ 𝑗 ∈ dom 𝑦 ) → ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ‘ 𝑗 ) = 𝑙 ) |
| 103 |
100 101 102
|
mp3an12 |
⊢ ( ¬ 𝑗 ∈ dom 𝑦 → ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ‘ 𝑗 ) = 𝑙 ) |
| 104 |
83 99 103
|
3syl |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ‘ 𝑗 ) = 𝑙 ) |
| 105 |
104
|
oveq1d |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ‘ 𝑗 ) · ( 𝐹 ‘ 𝑗 ) ) = ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ) |
| 106 |
96 105
|
eqtrd |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ‘ 𝑗 ) = ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ) |
| 107 |
106
|
opeq2d |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → 〈 𝑗 , ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ‘ 𝑗 ) 〉 = 〈 𝑗 , ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) 〉 ) |
| 108 |
107
|
sneqd |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → { 〈 𝑗 , ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ‘ 𝑗 ) 〉 } = { 〈 𝑗 , ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) 〉 } ) |
| 109 |
|
ovex |
⊢ ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ∈ V |
| 110 |
|
fmptsn |
⊢ ( ( 𝑗 ∈ V ∧ ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ∈ V ) → { 〈 𝑗 , ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) 〉 } = ( 𝑥 ∈ { 𝑗 } ↦ ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 111 |
100 109 110
|
mp2an |
⊢ { 〈 𝑗 , ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) 〉 } = ( 𝑥 ∈ { 𝑗 } ↦ ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ) |
| 112 |
111
|
a1i |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → { 〈 𝑗 , ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) 〉 } = ( 𝑥 ∈ { 𝑗 } ↦ ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 113 |
92 108 112
|
3eqtrd |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ↾ { 𝑗 } ) = ( 𝑥 ∈ { 𝑗 } ↦ ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 114 |
113
|
oveq2d |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( 𝑊 Σg ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ↾ { 𝑗 } ) ) = ( 𝑊 Σg ( 𝑥 ∈ { 𝑗 } ↦ ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ) ) ) |
| 115 |
|
cmnmnd |
⊢ ( 𝑊 ∈ CMnd → 𝑊 ∈ Mnd ) |
| 116 |
8 23 115
|
3syl |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → 𝑊 ∈ Mnd ) |
| 117 |
100
|
a1i |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → 𝑗 ∈ V ) |
| 118 |
|
eqidd |
⊢ ( 𝑥 = 𝑗 → ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) = ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ) |
| 119 |
1 118
|
gsumsn |
⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑗 ∈ V ∧ ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ∈ 𝐵 ) → ( 𝑊 Σg ( 𝑥 ∈ { 𝑗 } ↦ ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ) ) = ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ) |
| 120 |
116 117 22 119
|
syl3anc |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( 𝑊 Σg ( 𝑥 ∈ { 𝑗 } ↦ ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ) ) = ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ) |
| 121 |
114 120
|
eqtrd |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( 𝑊 Σg ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ↾ { 𝑗 } ) ) = ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ) |
| 122 |
89 121
|
oveq12d |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( ( 𝑊 Σg ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ( +g ‘ 𝑊 ) ( 𝑊 Σg ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ↾ { 𝑗 } ) ) ) = ( ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ( +g ‘ 𝑊 ) ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 123 |
73 122
|
eqtr2d |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ( +g ‘ 𝑊 ) ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ) = ( 𝑊 Σg ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ) ) |
| 124 |
123
|
eqeq1d |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( ( ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ( +g ‘ 𝑊 ) ( 𝑙 · ( 𝐹 ‘ 𝑗 ) ) ) = 0 ↔ ( 𝑊 Σg ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ) = 0 ) ) |
| 125 |
18 41 124
|
3bitrd |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) = ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ↔ ( 𝑊 Σg ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ) = 0 ) ) |
| 126 |
104
|
eqcomd |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → 𝑙 = ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ‘ 𝑗 ) ) |
| 127 |
126
|
eqeq1d |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( 𝑙 = 𝑌 ↔ ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ‘ 𝑗 ) = 𝑌 ) ) |
| 128 |
125 127
|
imbi12d |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ∧ 𝑦 finSupp 𝑌 ) ) → ( ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) = ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) → 𝑙 = 𝑌 ) ↔ ( ( 𝑊 Σg ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ) = 0 → ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ‘ 𝑗 ) = 𝑌 ) ) ) |
| 129 |
128
|
anassrs |
⊢ ( ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ) ∧ 𝑦 finSupp 𝑌 ) → ( ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) = ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) → 𝑙 = 𝑌 ) ↔ ( ( 𝑊 Σg ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ) = 0 → ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ‘ 𝑗 ) = 𝑌 ) ) ) |
| 130 |
129
|
pm5.74da |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ) → ( ( 𝑦 finSupp 𝑌 → ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) = ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) → 𝑙 = 𝑌 ) ) ↔ ( 𝑦 finSupp 𝑌 → ( ( 𝑊 Σg ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ) = 0 → ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ‘ 𝑗 ) = 𝑌 ) ) ) ) |
| 131 |
|
impexp |
⊢ ( ( ( 𝑦 finSupp 𝑌 ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) = ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ) → 𝑙 = 𝑌 ) ↔ ( 𝑦 finSupp 𝑌 → ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) = ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) → 𝑙 = 𝑌 ) ) ) |
| 132 |
131
|
a1i |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ) → ( ( ( 𝑦 finSupp 𝑌 ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) = ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ) → 𝑙 = 𝑌 ) ↔ ( 𝑦 finSupp 𝑌 → ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) = ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) → 𝑙 = 𝑌 ) ) ) ) |
| 133 |
64
|
bicomd |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ) → ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) finSupp 𝑌 ↔ 𝑦 finSupp 𝑌 ) ) |
| 134 |
133
|
imbi1d |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ) → ( ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) finSupp 𝑌 → ( ( 𝑊 Σg ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ) = 0 → ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ‘ 𝑗 ) = 𝑌 ) ) ↔ ( 𝑦 finSupp 𝑌 → ( ( 𝑊 Σg ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ) = 0 → ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ‘ 𝑗 ) = 𝑌 ) ) ) ) |
| 135 |
130 132 134
|
3bitr4d |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ ( 𝑙 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ) ) → ( ( ( 𝑦 finSupp 𝑌 ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) = ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ) → 𝑙 = 𝑌 ) ↔ ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) finSupp 𝑌 → ( ( 𝑊 Σg ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ) = 0 → ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ‘ 𝑗 ) = 𝑌 ) ) ) ) |
| 136 |
135
|
2ralbidva |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) → ( ∀ 𝑙 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ( ( 𝑦 finSupp 𝑌 ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) = ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ) → 𝑙 = 𝑌 ) ↔ ∀ 𝑙 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) finSupp 𝑌 → ( ( 𝑊 Σg ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ) = 0 → ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ‘ 𝑗 ) = 𝑌 ) ) ) ) |
| 137 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) → ( 𝑥 finSupp 𝑌 ↔ ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) finSupp 𝑌 ) ) |
| 138 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) → ( 𝑥 ∘f · 𝐹 ) = ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ) |
| 139 |
138
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) → ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = ( 𝑊 Σg ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ) ) |
| 140 |
139
|
eqeq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) → ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 ↔ ( 𝑊 Σg ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ) = 0 ) ) |
| 141 |
|
fveq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) → ( 𝑥 ‘ 𝑗 ) = ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ‘ 𝑗 ) ) |
| 142 |
141
|
eqeq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) → ( ( 𝑥 ‘ 𝑗 ) = 𝑌 ↔ ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ‘ 𝑗 ) = 𝑌 ) ) |
| 143 |
140 142
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) → ( ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ( 𝑥 ‘ 𝑗 ) = 𝑌 ) ↔ ( ( 𝑊 Σg ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ) = 0 → ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ‘ 𝑗 ) = 𝑌 ) ) ) |
| 144 |
137 143
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) → ( ( 𝑥 finSupp 𝑌 → ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ( 𝑥 ‘ 𝑗 ) = 𝑌 ) ) ↔ ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) finSupp 𝑌 → ( ( 𝑊 Σg ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ) = 0 → ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ‘ 𝑗 ) = 𝑌 ) ) ) ) |
| 145 |
144
|
ralxpmap |
⊢ ( 𝑗 ∈ 𝐼 → ( ∀ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( 𝑥 finSupp 𝑌 → ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ( 𝑥 ‘ 𝑗 ) = 𝑌 ) ) ↔ ∀ 𝑙 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) finSupp 𝑌 → ( ( 𝑊 Σg ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ) = 0 → ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ‘ 𝑗 ) = 𝑌 ) ) ) ) |
| 146 |
145
|
adantl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( 𝑥 finSupp 𝑌 → ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ( 𝑥 ‘ 𝑗 ) = 𝑌 ) ) ↔ ∀ 𝑙 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) finSupp 𝑌 → ( ( 𝑊 Σg ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ∘f · 𝐹 ) ) = 0 → ( ( 𝑦 ∪ { 〈 𝑗 , 𝑙 〉 } ) ‘ 𝑗 ) = 𝑌 ) ) ) ) |
| 147 |
136 146
|
bitr4d |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) → ( ∀ 𝑙 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ( ( 𝑦 finSupp 𝑌 ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) = ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ) → 𝑙 = 𝑌 ) ↔ ∀ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( 𝑥 finSupp 𝑌 → ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ( 𝑥 ‘ 𝑗 ) = 𝑌 ) ) ) ) |
| 148 |
|
breq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 finSupp 𝑌 ↔ 𝑥 finSupp 𝑌 ) ) |
| 149 |
148
|
ralrab |
⊢ ( ∀ 𝑥 ∈ { 𝑧 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑧 finSupp 𝑌 } ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ( 𝑥 ‘ 𝑗 ) = 𝑌 ) ↔ ∀ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ( 𝑥 finSupp 𝑌 → ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ( 𝑥 ‘ 𝑗 ) = 𝑌 ) ) ) |
| 150 |
147 149
|
bitr4di |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) → ( ∀ 𝑙 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ( ( 𝑦 finSupp 𝑌 ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) = ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ) → 𝑙 = 𝑌 ) ↔ ∀ 𝑥 ∈ { 𝑧 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑧 finSupp 𝑌 } ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ( 𝑥 ‘ 𝑗 ) = 𝑌 ) ) ) |
| 151 |
|
resima |
⊢ ( ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) “ ( 𝐼 ∖ { 𝑗 } ) ) = ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) |
| 152 |
151
|
eqcomi |
⊢ ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) = ( ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) “ ( 𝐼 ∖ { 𝑗 } ) ) |
| 153 |
152
|
fveq2i |
⊢ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) ) = ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) “ ( 𝐼 ∖ { 𝑗 } ) ) ) |
| 154 |
153
|
eleq2i |
⊢ ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) ) ↔ ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) “ ( 𝐼 ∖ { 𝑗 } ) ) ) ) |
| 155 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
| 156 |
77 32 33
|
sylancl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) → ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) : ( 𝐼 ∖ { 𝑗 } ) ⟶ 𝐵 ) |
| 157 |
|
simpl1 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) → 𝑊 ∈ LMod ) |
| 158 |
26
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( 𝐼 ∖ { 𝑗 } ) ∈ V ) |
| 159 |
158
|
adantr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) → ( 𝐼 ∖ { 𝑗 } ) ∈ V ) |
| 160 |
155 1 15 2 5 3 156 157 159
|
ellspd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) → ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) “ ( 𝐼 ∖ { 𝑗 } ) ) ) ↔ ∃ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ( 𝑦 finSupp 𝑌 ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) = ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ) ) ) |
| 161 |
154 160
|
bitrid |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) → ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) ) ↔ ∃ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ( 𝑦 finSupp 𝑌 ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) = ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ) ) ) |
| 162 |
161
|
imbi1d |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) → ( ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) ) → 𝑙 = 𝑌 ) ↔ ( ∃ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ( 𝑦 finSupp 𝑌 ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) = ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ) → 𝑙 = 𝑌 ) ) ) |
| 163 |
|
r19.23v |
⊢ ( ∀ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ( ( 𝑦 finSupp 𝑌 ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) = ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ) → 𝑙 = 𝑌 ) ↔ ( ∃ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ( 𝑦 finSupp 𝑌 ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) = ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ) → 𝑙 = 𝑌 ) ) |
| 164 |
162 163
|
bitr4di |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) → ( ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) ) → 𝑙 = 𝑌 ) ↔ ∀ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ( ( 𝑦 finSupp 𝑌 ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) = ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ) → 𝑙 = 𝑌 ) ) ) |
| 165 |
164
|
ralbidv |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) → ( ∀ 𝑙 ∈ ( Base ‘ 𝑅 ) ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) ) → 𝑙 = 𝑌 ) ↔ ∀ 𝑙 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝐼 ∖ { 𝑗 } ) ) ( ( 𝑦 finSupp 𝑌 ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) = ( 𝑊 Σg ( 𝑦 ∘f · ( 𝐹 ↾ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ) → 𝑙 = 𝑌 ) ) ) |
| 166 |
2
|
fvexi |
⊢ 𝑅 ∈ V |
| 167 |
|
eqid |
⊢ ( 𝑅 freeLMod 𝐼 ) = ( 𝑅 freeLMod 𝐼 ) |
| 168 |
|
eqid |
⊢ { 𝑧 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑧 finSupp 𝑌 } = { 𝑧 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑧 finSupp 𝑌 } |
| 169 |
167 15 5 168
|
frlmbas |
⊢ ( ( 𝑅 ∈ V ∧ 𝐼 ∈ 𝑋 ) → { 𝑧 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑧 finSupp 𝑌 } = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 170 |
166 169
|
mpan |
⊢ ( 𝐼 ∈ 𝑋 → { 𝑧 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑧 finSupp 𝑌 } = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 171 |
170
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → { 𝑧 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑧 finSupp 𝑌 } = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 172 |
171
|
adantr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) → { 𝑧 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑧 finSupp 𝑌 } = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
| 173 |
6 172
|
eqtr4id |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) → 𝐿 = { 𝑧 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑧 finSupp 𝑌 } ) |
| 174 |
173
|
raleqdv |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ 𝐿 ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ( 𝑥 ‘ 𝑗 ) = 𝑌 ) ↔ ∀ 𝑥 ∈ { 𝑧 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ∣ 𝑧 finSupp 𝑌 } ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ( 𝑥 ‘ 𝑗 ) = 𝑌 ) ) ) |
| 175 |
150 165 174
|
3bitr4d |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) → ( ∀ 𝑙 ∈ ( Base ‘ 𝑅 ) ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) ) → 𝑙 = 𝑌 ) ↔ ∀ 𝑥 ∈ 𝐿 ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ( 𝑥 ‘ 𝑗 ) = 𝑌 ) ) ) |
| 176 |
7 175
|
bitrid |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) → ( ∀ 𝑙 ∈ ( ( Base ‘ 𝑅 ) ∖ { 𝑌 } ) ¬ ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) ) ↔ ∀ 𝑥 ∈ 𝐿 ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ( 𝑥 ‘ 𝑗 ) = 𝑌 ) ) ) |
| 177 |
2
|
lmodfgrp |
⊢ ( 𝑊 ∈ LMod → 𝑅 ∈ Grp ) |
| 178 |
15 5 14
|
grpinvnzcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑙 ∈ ( ( Base ‘ 𝑅 ) ∖ { 𝑌 } ) ) → ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) ∈ ( ( Base ‘ 𝑅 ) ∖ { 𝑌 } ) ) |
| 179 |
177 178
|
sylan |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑙 ∈ ( ( Base ‘ 𝑅 ) ∖ { 𝑌 } ) ) → ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) ∈ ( ( Base ‘ 𝑅 ) ∖ { 𝑌 } ) ) |
| 180 |
15 5 14
|
grpinvnzcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑘 ∈ ( ( Base ‘ 𝑅 ) ∖ { 𝑌 } ) ) → ( ( invg ‘ 𝑅 ) ‘ 𝑘 ) ∈ ( ( Base ‘ 𝑅 ) ∖ { 𝑌 } ) ) |
| 181 |
177 180
|
sylan |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑘 ∈ ( ( Base ‘ 𝑅 ) ∖ { 𝑌 } ) ) → ( ( invg ‘ 𝑅 ) ‘ 𝑘 ) ∈ ( ( Base ‘ 𝑅 ) ∖ { 𝑌 } ) ) |
| 182 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( Base ‘ 𝑅 ) ∖ { 𝑌 } ) → 𝑘 ∈ ( Base ‘ 𝑅 ) ) |
| 183 |
15 14
|
grpinvinv |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑘 ∈ ( Base ‘ 𝑅 ) ) → ( ( invg ‘ 𝑅 ) ‘ ( ( invg ‘ 𝑅 ) ‘ 𝑘 ) ) = 𝑘 ) |
| 184 |
177 182 183
|
syl2an |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑘 ∈ ( ( Base ‘ 𝑅 ) ∖ { 𝑌 } ) ) → ( ( invg ‘ 𝑅 ) ‘ ( ( invg ‘ 𝑅 ) ‘ 𝑘 ) ) = 𝑘 ) |
| 185 |
184
|
eqcomd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑘 ∈ ( ( Base ‘ 𝑅 ) ∖ { 𝑌 } ) ) → 𝑘 = ( ( invg ‘ 𝑅 ) ‘ ( ( invg ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
| 186 |
|
fveq2 |
⊢ ( 𝑙 = ( ( invg ‘ 𝑅 ) ‘ 𝑘 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) = ( ( invg ‘ 𝑅 ) ‘ ( ( invg ‘ 𝑅 ) ‘ 𝑘 ) ) ) |
| 187 |
186
|
rspceeqv |
⊢ ( ( ( ( invg ‘ 𝑅 ) ‘ 𝑘 ) ∈ ( ( Base ‘ 𝑅 ) ∖ { 𝑌 } ) ∧ 𝑘 = ( ( invg ‘ 𝑅 ) ‘ ( ( invg ‘ 𝑅 ) ‘ 𝑘 ) ) ) → ∃ 𝑙 ∈ ( ( Base ‘ 𝑅 ) ∖ { 𝑌 } ) 𝑘 = ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) ) |
| 188 |
181 185 187
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑘 ∈ ( ( Base ‘ 𝑅 ) ∖ { 𝑌 } ) ) → ∃ 𝑙 ∈ ( ( Base ‘ 𝑅 ) ∖ { 𝑌 } ) 𝑘 = ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) ) |
| 189 |
|
oveq1 |
⊢ ( 𝑘 = ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) → ( 𝑘 · ( 𝐹 ‘ 𝑗 ) ) = ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) ) |
| 190 |
189
|
eleq1d |
⊢ ( 𝑘 = ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) → ( ( 𝑘 · ( 𝐹 ‘ 𝑗 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) ) ↔ ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ) |
| 191 |
190
|
notbid |
⊢ ( 𝑘 = ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) → ( ¬ ( 𝑘 · ( 𝐹 ‘ 𝑗 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) ) ↔ ¬ ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ) |
| 192 |
191
|
adantl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑘 = ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) ) → ( ¬ ( 𝑘 · ( 𝐹 ‘ 𝑗 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) ) ↔ ¬ ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ) |
| 193 |
179 188 192
|
ralxfrd |
⊢ ( 𝑊 ∈ LMod → ( ∀ 𝑘 ∈ ( ( Base ‘ 𝑅 ) ∖ { 𝑌 } ) ¬ ( 𝑘 · ( 𝐹 ‘ 𝑗 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) ) ↔ ∀ 𝑙 ∈ ( ( Base ‘ 𝑅 ) ∖ { 𝑌 } ) ¬ ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ) |
| 194 |
193
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( ∀ 𝑘 ∈ ( ( Base ‘ 𝑅 ) ∖ { 𝑌 } ) ¬ ( 𝑘 · ( 𝐹 ‘ 𝑗 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) ) ↔ ∀ 𝑙 ∈ ( ( Base ‘ 𝑅 ) ∖ { 𝑌 } ) ¬ ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ) |
| 195 |
194
|
adantr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) → ( ∀ 𝑘 ∈ ( ( Base ‘ 𝑅 ) ∖ { 𝑌 } ) ¬ ( 𝑘 · ( 𝐹 ‘ 𝑗 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) ) ↔ ∀ 𝑙 ∈ ( ( Base ‘ 𝑅 ) ∖ { 𝑌 } ) ¬ ( ( ( invg ‘ 𝑅 ) ‘ 𝑙 ) · ( 𝐹 ‘ 𝑗 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ) |
| 196 |
|
simplr |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ 𝑥 ∈ 𝐿 ) → 𝑗 ∈ 𝐼 ) |
| 197 |
5
|
fvexi |
⊢ 𝑌 ∈ V |
| 198 |
197
|
fvconst2 |
⊢ ( 𝑗 ∈ 𝐼 → ( ( 𝐼 × { 𝑌 } ) ‘ 𝑗 ) = 𝑌 ) |
| 199 |
196 198
|
syl |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ 𝑥 ∈ 𝐿 ) → ( ( 𝐼 × { 𝑌 } ) ‘ 𝑗 ) = 𝑌 ) |
| 200 |
199
|
eqeq2d |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ 𝑥 ∈ 𝐿 ) → ( ( 𝑥 ‘ 𝑗 ) = ( ( 𝐼 × { 𝑌 } ) ‘ 𝑗 ) ↔ ( 𝑥 ‘ 𝑗 ) = 𝑌 ) ) |
| 201 |
200
|
imbi2d |
⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) ∧ 𝑥 ∈ 𝐿 ) → ( ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ( 𝑥 ‘ 𝑗 ) = ( ( 𝐼 × { 𝑌 } ) ‘ 𝑗 ) ) ↔ ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ( 𝑥 ‘ 𝑗 ) = 𝑌 ) ) ) |
| 202 |
201
|
ralbidva |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ 𝐿 ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ( 𝑥 ‘ 𝑗 ) = ( ( 𝐼 × { 𝑌 } ) ‘ 𝑗 ) ) ↔ ∀ 𝑥 ∈ 𝐿 ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ( 𝑥 ‘ 𝑗 ) = 𝑌 ) ) ) |
| 203 |
176 195 202
|
3bitr4d |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑗 ∈ 𝐼 ) → ( ∀ 𝑘 ∈ ( ( Base ‘ 𝑅 ) ∖ { 𝑌 } ) ¬ ( 𝑘 · ( 𝐹 ‘ 𝑗 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) ) ↔ ∀ 𝑥 ∈ 𝐿 ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ( 𝑥 ‘ 𝑗 ) = ( ( 𝐼 × { 𝑌 } ) ‘ 𝑗 ) ) ) ) |
| 204 |
203
|
ralbidva |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( ∀ 𝑗 ∈ 𝐼 ∀ 𝑘 ∈ ( ( Base ‘ 𝑅 ) ∖ { 𝑌 } ) ¬ ( 𝑘 · ( 𝐹 ‘ 𝑗 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) ) ↔ ∀ 𝑗 ∈ 𝐼 ∀ 𝑥 ∈ 𝐿 ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ( 𝑥 ‘ 𝑗 ) = ( ( 𝐼 × { 𝑌 } ) ‘ 𝑗 ) ) ) ) |
| 205 |
1 3 155 2 15 5
|
islindf2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( 𝐹 LIndF 𝑊 ↔ ∀ 𝑗 ∈ 𝐼 ∀ 𝑘 ∈ ( ( Base ‘ 𝑅 ) ∖ { 𝑌 } ) ¬ ( 𝑘 · ( 𝐹 ‘ 𝑗 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑗 } ) ) ) ) ) |
| 206 |
167 15 6
|
frlmbasf |
⊢ ( ( 𝐼 ∈ 𝑋 ∧ 𝑥 ∈ 𝐿 ) → 𝑥 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 207 |
206
|
3ad2antl2 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → 𝑥 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 208 |
207
|
ffnd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → 𝑥 Fn 𝐼 ) |
| 209 |
|
fnconstg |
⊢ ( 𝑌 ∈ V → ( 𝐼 × { 𝑌 } ) Fn 𝐼 ) |
| 210 |
197 209
|
ax-mp |
⊢ ( 𝐼 × { 𝑌 } ) Fn 𝐼 |
| 211 |
|
eqfnfv |
⊢ ( ( 𝑥 Fn 𝐼 ∧ ( 𝐼 × { 𝑌 } ) Fn 𝐼 ) → ( 𝑥 = ( 𝐼 × { 𝑌 } ) ↔ ∀ 𝑗 ∈ 𝐼 ( 𝑥 ‘ 𝑗 ) = ( ( 𝐼 × { 𝑌 } ) ‘ 𝑗 ) ) ) |
| 212 |
208 210 211
|
sylancl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ( 𝑥 = ( 𝐼 × { 𝑌 } ) ↔ ∀ 𝑗 ∈ 𝐼 ( 𝑥 ‘ 𝑗 ) = ( ( 𝐼 × { 𝑌 } ) ‘ 𝑗 ) ) ) |
| 213 |
212
|
imbi2d |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ( ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → 𝑥 = ( 𝐼 × { 𝑌 } ) ) ↔ ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ∀ 𝑗 ∈ 𝐼 ( 𝑥 ‘ 𝑗 ) = ( ( 𝐼 × { 𝑌 } ) ‘ 𝑗 ) ) ) ) |
| 214 |
213
|
ralbidva |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐿 ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → 𝑥 = ( 𝐼 × { 𝑌 } ) ) ↔ ∀ 𝑥 ∈ 𝐿 ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ∀ 𝑗 ∈ 𝐼 ( 𝑥 ‘ 𝑗 ) = ( ( 𝐼 × { 𝑌 } ) ‘ 𝑗 ) ) ) ) |
| 215 |
|
r19.21v |
⊢ ( ∀ 𝑗 ∈ 𝐼 ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ( 𝑥 ‘ 𝑗 ) = ( ( 𝐼 × { 𝑌 } ) ‘ 𝑗 ) ) ↔ ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ∀ 𝑗 ∈ 𝐼 ( 𝑥 ‘ 𝑗 ) = ( ( 𝐼 × { 𝑌 } ) ‘ 𝑗 ) ) ) |
| 216 |
215
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐿 ∀ 𝑗 ∈ 𝐼 ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ( 𝑥 ‘ 𝑗 ) = ( ( 𝐼 × { 𝑌 } ) ‘ 𝑗 ) ) ↔ ∀ 𝑥 ∈ 𝐿 ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ∀ 𝑗 ∈ 𝐼 ( 𝑥 ‘ 𝑗 ) = ( ( 𝐼 × { 𝑌 } ) ‘ 𝑗 ) ) ) |
| 217 |
|
ralcom |
⊢ ( ∀ 𝑥 ∈ 𝐿 ∀ 𝑗 ∈ 𝐼 ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ( 𝑥 ‘ 𝑗 ) = ( ( 𝐼 × { 𝑌 } ) ‘ 𝑗 ) ) ↔ ∀ 𝑗 ∈ 𝐼 ∀ 𝑥 ∈ 𝐿 ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ( 𝑥 ‘ 𝑗 ) = ( ( 𝐼 × { 𝑌 } ) ‘ 𝑗 ) ) ) |
| 218 |
216 217
|
bitr3i |
⊢ ( ∀ 𝑥 ∈ 𝐿 ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ∀ 𝑗 ∈ 𝐼 ( 𝑥 ‘ 𝑗 ) = ( ( 𝐼 × { 𝑌 } ) ‘ 𝑗 ) ) ↔ ∀ 𝑗 ∈ 𝐼 ∀ 𝑥 ∈ 𝐿 ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ( 𝑥 ‘ 𝑗 ) = ( ( 𝐼 × { 𝑌 } ) ‘ 𝑗 ) ) ) |
| 219 |
214 218
|
bitrdi |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐿 ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → 𝑥 = ( 𝐼 × { 𝑌 } ) ) ↔ ∀ 𝑗 ∈ 𝐼 ∀ 𝑥 ∈ 𝐿 ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → ( 𝑥 ‘ 𝑗 ) = ( ( 𝐼 × { 𝑌 } ) ‘ 𝑗 ) ) ) ) |
| 220 |
204 205 219
|
3bitr4d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( 𝐹 LIndF 𝑊 ↔ ∀ 𝑥 ∈ 𝐿 ( ( 𝑊 Σg ( 𝑥 ∘f · 𝐹 ) ) = 0 → 𝑥 = ( 𝐼 × { 𝑌 } ) ) ) ) |