| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpinvnzcl.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | grpinvnzcl.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | grpinvnzcl.n | ⊢ 𝑁  =  ( invg ‘ 𝐺 ) | 
						
							| 4 |  | eldifi | ⊢ ( 𝑋  ∈  ( 𝐵  ∖  {  0  } )  →  𝑋  ∈  𝐵 ) | 
						
							| 5 | 1 3 | grpinvcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( 𝑁 ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 6 | 4 5 | sylan2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  ( 𝐵  ∖  {  0  } ) )  →  ( 𝑁 ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 7 |  | eldifsn | ⊢ ( 𝑋  ∈  ( 𝐵  ∖  {  0  } )  ↔  ( 𝑋  ∈  𝐵  ∧  𝑋  ≠   0  ) ) | 
						
							| 8 | 1 2 3 | grpinvnz | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑋  ≠   0  )  →  ( 𝑁 ‘ 𝑋 )  ≠   0  ) | 
						
							| 9 | 8 | 3expb | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑋  ≠   0  ) )  →  ( 𝑁 ‘ 𝑋 )  ≠   0  ) | 
						
							| 10 | 7 9 | sylan2b | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  ( 𝐵  ∖  {  0  } ) )  →  ( 𝑁 ‘ 𝑋 )  ≠   0  ) | 
						
							| 11 |  | eldifsn | ⊢ ( ( 𝑁 ‘ 𝑋 )  ∈  ( 𝐵  ∖  {  0  } )  ↔  ( ( 𝑁 ‘ 𝑋 )  ∈  𝐵  ∧  ( 𝑁 ‘ 𝑋 )  ≠   0  ) ) | 
						
							| 12 | 6 10 11 | sylanbrc | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  ( 𝐵  ∖  {  0  } ) )  →  ( 𝑁 ‘ 𝑋 )  ∈  ( 𝐵  ∖  {  0  } ) ) |