Metamath Proof Explorer


Theorem grpinvnzcl

Description: The inverse of a nonzero group element is a nonzero group element. (Contributed by Stefan O'Rear, 27-Feb-2015)

Ref Expression
Hypotheses grpinvnzcl.b 𝐵 = ( Base ‘ 𝐺 )
grpinvnzcl.z 0 = ( 0g𝐺 )
grpinvnzcl.n 𝑁 = ( invg𝐺 )
Assertion grpinvnzcl ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑁𝑋 ) ∈ ( 𝐵 ∖ { 0 } ) )

Proof

Step Hyp Ref Expression
1 grpinvnzcl.b 𝐵 = ( Base ‘ 𝐺 )
2 grpinvnzcl.z 0 = ( 0g𝐺 )
3 grpinvnzcl.n 𝑁 = ( invg𝐺 )
4 eldifi ( 𝑋 ∈ ( 𝐵 ∖ { 0 } ) → 𝑋𝐵 )
5 1 3 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝑁𝑋 ) ∈ 𝐵 )
6 4 5 sylan2 ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑁𝑋 ) ∈ 𝐵 )
7 eldifsn ( 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑋𝐵𝑋0 ) )
8 1 2 3 grpinvnz ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵𝑋0 ) → ( 𝑁𝑋 ) ≠ 0 )
9 8 3expb ( ( 𝐺 ∈ Grp ∧ ( 𝑋𝐵𝑋0 ) ) → ( 𝑁𝑋 ) ≠ 0 )
10 7 9 sylan2b ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑁𝑋 ) ≠ 0 )
11 eldifsn ( ( 𝑁𝑋 ) ∈ ( 𝐵 ∖ { 0 } ) ↔ ( ( 𝑁𝑋 ) ∈ 𝐵 ∧ ( 𝑁𝑋 ) ≠ 0 ) )
12 6 10 11 sylanbrc ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑁𝑋 ) ∈ ( 𝐵 ∖ { 0 } ) )