Step |
Hyp |
Ref |
Expression |
1 |
|
islindf.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
islindf.v |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
3 |
|
islindf.k |
⊢ 𝐾 = ( LSpan ‘ 𝑊 ) |
4 |
|
islindf.s |
⊢ 𝑆 = ( Scalar ‘ 𝑊 ) |
5 |
|
islindf.n |
⊢ 𝑁 = ( Base ‘ 𝑆 ) |
6 |
|
islindf.z |
⊢ 0 = ( 0g ‘ 𝑆 ) |
7 |
|
simp1 |
⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → 𝑊 ∈ 𝑌 ) |
8 |
|
simp3 |
⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → 𝐹 : 𝐼 ⟶ 𝐵 ) |
9 |
|
simp2 |
⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → 𝐼 ∈ 𝑋 ) |
10 |
8 9
|
fexd |
⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → 𝐹 ∈ V ) |
11 |
1 2 3 4 5 6
|
islindf |
⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐹 ∈ V ) → ( 𝐹 LIndF 𝑊 ↔ ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑘 ∈ ( 𝑁 ∖ { 0 } ) ¬ ( 𝑘 · ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐾 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ) ) ) |
12 |
7 10 11
|
syl2anc |
⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( 𝐹 LIndF 𝑊 ↔ ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑘 ∈ ( 𝑁 ∖ { 0 } ) ¬ ( 𝑘 · ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐾 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ) ) ) |
13 |
|
ffdm |
⊢ ( 𝐹 : 𝐼 ⟶ 𝐵 → ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ dom 𝐹 ⊆ 𝐼 ) ) |
14 |
13
|
simpld |
⊢ ( 𝐹 : 𝐼 ⟶ 𝐵 → 𝐹 : dom 𝐹 ⟶ 𝐵 ) |
15 |
14
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → 𝐹 : dom 𝐹 ⟶ 𝐵 ) |
16 |
15
|
biantrurd |
⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑘 ∈ ( 𝑁 ∖ { 0 } ) ¬ ( 𝑘 · ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐾 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ↔ ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑘 ∈ ( 𝑁 ∖ { 0 } ) ¬ ( 𝑘 · ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐾 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ) ) ) |
17 |
|
fdm |
⊢ ( 𝐹 : 𝐼 ⟶ 𝐵 → dom 𝐹 = 𝐼 ) |
18 |
17
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → dom 𝐹 = 𝐼 ) |
19 |
18
|
difeq1d |
⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( dom 𝐹 ∖ { 𝑥 } ) = ( 𝐼 ∖ { 𝑥 } ) ) |
20 |
19
|
imaeq2d |
⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) = ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
21 |
20
|
fveq2d |
⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( 𝐾 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) = ( 𝐾 ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
22 |
21
|
eleq2d |
⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( ( 𝑘 · ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐾 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ↔ ( 𝑘 · ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐾 ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
23 |
22
|
notbid |
⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( ¬ ( 𝑘 · ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐾 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ↔ ¬ ( 𝑘 · ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐾 ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
24 |
23
|
ralbidv |
⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( ∀ 𝑘 ∈ ( 𝑁 ∖ { 0 } ) ¬ ( 𝑘 · ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐾 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ↔ ∀ 𝑘 ∈ ( 𝑁 ∖ { 0 } ) ¬ ( 𝑘 · ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐾 ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
25 |
18 24
|
raleqbidv |
⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑘 ∈ ( 𝑁 ∖ { 0 } ) ¬ ( 𝑘 · ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐾 ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ↔ ∀ 𝑥 ∈ 𝐼 ∀ 𝑘 ∈ ( 𝑁 ∖ { 0 } ) ¬ ( 𝑘 · ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐾 ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
26 |
12 16 25
|
3bitr2d |
⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( 𝐹 LIndF 𝑊 ↔ ∀ 𝑥 ∈ 𝐼 ∀ 𝑘 ∈ ( 𝑁 ∖ { 0 } ) ¬ ( 𝑘 · ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐾 ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |