Step |
Hyp |
Ref |
Expression |
1 |
|
lindff.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
simpl |
⊢ ( ( 𝐹 LIndF 𝑊 ∧ 𝑊 ∈ 𝑌 ) → 𝐹 LIndF 𝑊 ) |
3 |
|
rellindf |
⊢ Rel LIndF |
4 |
3
|
brrelex1i |
⊢ ( 𝐹 LIndF 𝑊 → 𝐹 ∈ V ) |
5 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
7 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
8 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
9 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
10 |
1 5 6 7 8 9
|
islindf |
⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐹 ∈ V ) → ( 𝐹 LIndF 𝑊 ↔ ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ) ) ) |
11 |
4 10
|
sylan2 |
⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐹 LIndF 𝑊 ) → ( 𝐹 LIndF 𝑊 ↔ ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ) ) ) |
12 |
11
|
ancoms |
⊢ ( ( 𝐹 LIndF 𝑊 ∧ 𝑊 ∈ 𝑌 ) → ( 𝐹 LIndF 𝑊 ↔ ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ) ) ) |
13 |
2 12
|
mpbid |
⊢ ( ( 𝐹 LIndF 𝑊 ∧ 𝑊 ∈ 𝑌 ) → ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ) ) |
14 |
13
|
simpld |
⊢ ( ( 𝐹 LIndF 𝑊 ∧ 𝑊 ∈ 𝑌 ) → 𝐹 : dom 𝐹 ⟶ 𝐵 ) |