Metamath Proof Explorer


Theorem lindff

Description: Functional property of a linearly independent family. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypothesis lindff.b 𝐵 = ( Base ‘ 𝑊 )
Assertion lindff ( ( 𝐹 LIndF 𝑊𝑊𝑌 ) → 𝐹 : dom 𝐹𝐵 )

Proof

Step Hyp Ref Expression
1 lindff.b 𝐵 = ( Base ‘ 𝑊 )
2 simpl ( ( 𝐹 LIndF 𝑊𝑊𝑌 ) → 𝐹 LIndF 𝑊 )
3 rellindf Rel LIndF
4 3 brrelex1i ( 𝐹 LIndF 𝑊𝐹 ∈ V )
5 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
6 eqid ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 )
7 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
8 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
9 eqid ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) )
10 1 5 6 7 8 9 islindf ( ( 𝑊𝑌𝐹 ∈ V ) → ( 𝐹 LIndF 𝑊 ↔ ( 𝐹 : dom 𝐹𝐵 ∧ ∀ 𝑥 ∈ dom 𝐹𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠𝑊 ) ( 𝐹𝑥 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ) ) )
11 4 10 sylan2 ( ( 𝑊𝑌𝐹 LIndF 𝑊 ) → ( 𝐹 LIndF 𝑊 ↔ ( 𝐹 : dom 𝐹𝐵 ∧ ∀ 𝑥 ∈ dom 𝐹𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠𝑊 ) ( 𝐹𝑥 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ) ) )
12 11 ancoms ( ( 𝐹 LIndF 𝑊𝑊𝑌 ) → ( 𝐹 LIndF 𝑊 ↔ ( 𝐹 : dom 𝐹𝐵 ∧ ∀ 𝑥 ∈ dom 𝐹𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠𝑊 ) ( 𝐹𝑥 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ) ) )
13 2 12 mpbid ( ( 𝐹 LIndF 𝑊𝑊𝑌 ) → ( 𝐹 : dom 𝐹𝐵 ∧ ∀ 𝑥 ∈ dom 𝐹𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠𝑊 ) ( 𝐹𝑥 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑥 } ) ) ) ) )
14 13 simpld ( ( 𝐹 LIndF 𝑊𝑊𝑌 ) → 𝐹 : dom 𝐹𝐵 )