Description: The independent-family predicate is a proper relation and can be used with brrelex1i . (Contributed by Stefan O'Rear, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | rellindf | ⊢ Rel LIndF |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lindf | ⊢ LIndF = { 〈 𝑓 , 𝑤 〉 ∣ ( 𝑓 : dom 𝑓 ⟶ ( Base ‘ 𝑤 ) ∧ [ ( Scalar ‘ 𝑤 ) / 𝑠 ] ∀ 𝑥 ∈ dom 𝑓 ∀ 𝑘 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑓 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) ) ) } | |
2 | 1 | relopabiv | ⊢ Rel LIndF |