Metamath Proof Explorer


Theorem rellindf

Description: The independent-family predicate is a proper relation and can be used with brrelex1i . (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Assertion rellindf Rel LIndF

Proof

Step Hyp Ref Expression
1 df-lindf LIndF = { ⟨ 𝑓 , 𝑤 ⟩ ∣ ( 𝑓 : dom 𝑓 ⟶ ( Base ‘ 𝑤 ) ∧ [ ( Scalar ‘ 𝑤 ) / 𝑠 ]𝑥 ∈ dom 𝑓𝑘 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g𝑠 ) } ) ¬ ( 𝑘 ( ·𝑠𝑤 ) ( 𝑓𝑥 ) ) ∈ ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑓 “ ( dom 𝑓 ∖ { 𝑥 } ) ) ) ) }
2 1 relopabiv Rel LIndF