Description: The independent-family predicate is a proper relation and can be used with brrelex1i . (Contributed by Stefan O'Rear, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | rellindf | |- Rel LIndF |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lindf | |- LIndF = { <. f , w >. | ( f : dom f --> ( Base ` w ) /\ [. ( Scalar ` w ) / s ]. A. x e. dom f A. k e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) ) } |
|
2 | 1 | relopabiv | |- Rel LIndF |