Metamath Proof Explorer


Theorem rellindf

Description: The independent-family predicate is a proper relation and can be used with brrelex1i . (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Assertion rellindf
|- Rel LIndF

Proof

Step Hyp Ref Expression
1 df-lindf
 |-  LIndF = { <. f , w >. | ( f : dom f --> ( Base ` w ) /\ [. ( Scalar ` w ) / s ]. A. x e. dom f A. k e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) ) }
2 1 relopabiv
 |-  Rel LIndF