Metamath Proof Explorer


Definition df-lindf

Description: An independent family is a family of vectors, no nonzero multiple of which can be expressed as a linear combination of other elements of the family. This is almost, but not quite, the same as a function into an independent set.

This is a defined concept because it matters in many cases whether independence is taken at a set or family level. For instance, a number is transcedental iff its nonzero powers are linearly independent. Is 1 transcedental? It has only one nonzero power.

We can almost define family independence as a family of unequal elements with independent range, as islindf3 , but taking that as primitive would lead to unpleasant corner case behavior with the zero ring.

This is equivalent to the common definition of having no nontrivial representations of zero ( islindf4 ) and only one representation for each element of the range ( islindf5 ). (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Assertion df-lindf
|- LIndF = { <. f , w >. | ( f : dom f --> ( Base ` w ) /\ [. ( Scalar ` w ) / s ]. A. x e. dom f A. k e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 clindf
 |-  LIndF
1 vf
 |-  f
2 vw
 |-  w
3 1 cv
 |-  f
4 3 cdm
 |-  dom f
5 cbs
 |-  Base
6 2 cv
 |-  w
7 6 5 cfv
 |-  ( Base ` w )
8 4 7 3 wf
 |-  f : dom f --> ( Base ` w )
9 csca
 |-  Scalar
10 6 9 cfv
 |-  ( Scalar ` w )
11 vs
 |-  s
12 vx
 |-  x
13 vk
 |-  k
14 11 cv
 |-  s
15 14 5 cfv
 |-  ( Base ` s )
16 c0g
 |-  0g
17 14 16 cfv
 |-  ( 0g ` s )
18 17 csn
 |-  { ( 0g ` s ) }
19 15 18 cdif
 |-  ( ( Base ` s ) \ { ( 0g ` s ) } )
20 13 cv
 |-  k
21 cvsca
 |-  .s
22 6 21 cfv
 |-  ( .s ` w )
23 12 cv
 |-  x
24 23 3 cfv
 |-  ( f ` x )
25 20 24 22 co
 |-  ( k ( .s ` w ) ( f ` x ) )
26 clspn
 |-  LSpan
27 6 26 cfv
 |-  ( LSpan ` w )
28 23 csn
 |-  { x }
29 4 28 cdif
 |-  ( dom f \ { x } )
30 3 29 cima
 |-  ( f " ( dom f \ { x } ) )
31 30 27 cfv
 |-  ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) )
32 25 31 wcel
 |-  ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) )
33 32 wn
 |-  -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) )
34 33 13 19 wral
 |-  A. k e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) )
35 34 12 4 wral
 |-  A. x e. dom f A. k e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) )
36 35 11 10 wsbc
 |-  [. ( Scalar ` w ) / s ]. A. x e. dom f A. k e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) )
37 8 36 wa
 |-  ( f : dom f --> ( Base ` w ) /\ [. ( Scalar ` w ) / s ]. A. x e. dom f A. k e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) )
38 37 1 2 copab
 |-  { <. f , w >. | ( f : dom f --> ( Base ` w ) /\ [. ( Scalar ` w ) / s ]. A. x e. dom f A. k e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) ) }
39 0 38 wceq
 |-  LIndF = { <. f , w >. | ( f : dom f --> ( Base ` w ) /\ [. ( Scalar ` w ) / s ]. A. x e. dom f A. k e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) ) }