Description: An independent family is a family of vectors, no nonzero multiple of which can be expressed as a linear combination of other elements of the family. This is almost, but not quite, the same as a function into an independent set.
This is a defined concept because it matters in many cases whether independence is taken at a set or family level. For instance, a number is transcedental iff its nonzero powers are linearly independent. Is 1 transcedental? It has only one nonzero power.
We can almost define family independence as a family of unequal elements with independent range, as islindf3 , but taking that as primitive would lead to unpleasant corner case behavior with the zero ring.
This is equivalent to the common definition of having no nontrivial representations of zero ( islindf4 ) and only one representation for each element of the range ( islindf5 ). (Contributed by Stefan O'Rear, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-lindf | |- LIndF = { <. f , w >. | ( f : dom f --> ( Base ` w ) /\ [. ( Scalar ` w ) / s ]. A. x e. dom f A. k e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | clindf | |- LIndF |
|
1 | vf | |- f |
|
2 | vw | |- w |
|
3 | 1 | cv | |- f |
4 | 3 | cdm | |- dom f |
5 | cbs | |- Base |
|
6 | 2 | cv | |- w |
7 | 6 5 | cfv | |- ( Base ` w ) |
8 | 4 7 3 | wf | |- f : dom f --> ( Base ` w ) |
9 | csca | |- Scalar |
|
10 | 6 9 | cfv | |- ( Scalar ` w ) |
11 | vs | |- s |
|
12 | vx | |- x |
|
13 | vk | |- k |
|
14 | 11 | cv | |- s |
15 | 14 5 | cfv | |- ( Base ` s ) |
16 | c0g | |- 0g |
|
17 | 14 16 | cfv | |- ( 0g ` s ) |
18 | 17 | csn | |- { ( 0g ` s ) } |
19 | 15 18 | cdif | |- ( ( Base ` s ) \ { ( 0g ` s ) } ) |
20 | 13 | cv | |- k |
21 | cvsca | |- .s |
|
22 | 6 21 | cfv | |- ( .s ` w ) |
23 | 12 | cv | |- x |
24 | 23 3 | cfv | |- ( f ` x ) |
25 | 20 24 22 | co | |- ( k ( .s ` w ) ( f ` x ) ) |
26 | clspn | |- LSpan |
|
27 | 6 26 | cfv | |- ( LSpan ` w ) |
28 | 23 | csn | |- { x } |
29 | 4 28 | cdif | |- ( dom f \ { x } ) |
30 | 3 29 | cima | |- ( f " ( dom f \ { x } ) ) |
31 | 30 27 | cfv | |- ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) |
32 | 25 31 | wcel | |- ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) |
33 | 32 | wn | |- -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) |
34 | 33 13 19 | wral | |- A. k e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) |
35 | 34 12 4 | wral | |- A. x e. dom f A. k e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) |
36 | 35 11 10 | wsbc | |- [. ( Scalar ` w ) / s ]. A. x e. dom f A. k e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) |
37 | 8 36 | wa | |- ( f : dom f --> ( Base ` w ) /\ [. ( Scalar ` w ) / s ]. A. x e. dom f A. k e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) ) |
38 | 37 1 2 | copab | |- { <. f , w >. | ( f : dom f --> ( Base ` w ) /\ [. ( Scalar ` w ) / s ]. A. x e. dom f A. k e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) ) } |
39 | 0 38 | wceq | |- LIndF = { <. f , w >. | ( f : dom f --> ( Base ` w ) /\ [. ( Scalar ` w ) / s ]. A. x e. dom f A. k e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( k ( .s ` w ) ( f ` x ) ) e. ( ( LSpan ` w ) ` ( f " ( dom f \ { x } ) ) ) ) } |